PromptSMILES: prompting for scaffold decoration and fragment linking in chemical language models

  • 0Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr. Aguiader 88, 08003, Barcelona, Spain. morganthomas263@gmail.com.
Journal of cheminformatics +

|

Abstract

SMILES-based generative models are amongst the most robust and successful recent methods used to augment drug design. They are typically used for complete de novo generation, however, scaffold decoration and fragment linking applications are sometimes desirable which requires a different grammar, architecture, training dataset and therefore, re-training of a new model. In this work, we describe a simple procedure to conduct constrained molecule generation with a SMILES-based generative model to extend applicability to scaffold decoration and fragment linking by providing SMILES prompts, without the need for re-training. In combination with reinforcement learning, we show that pre-trained, decoder-only models adapt to these applications quickly and can further optimize molecule generation towards a specified objective. We compare the performance of this approach to a variety of orthogonal approaches and show that performance is comparable or better. For convenience, we provide an easy-to-use python package to facilitate model sampling which can be found on GitHub and the Python Package Index.Scientific contributionThis novel method extends an autoregressive chemical language model to scaffold decoration and fragment linking scenarios. This doesn't require re-training, the use of a bespoke grammar, or curation of a custom dataset, as commonly required by other approaches.

Related Concept Videos

Molecular Models 02:00

38.2K

Physical models representing molecular architectures of chemical compounds play essential roles in understanding chemistry. The use of molecular models makes it easier to visualize the structures and shapes of atoms and molecules.

Skeletal Model

Simpler two-dimensional representations of chemical compounds are accomplished using skeletal models. The illustration shows only the molecular framework or bonds without explicitly showing the atoms. In this representation, many of the carbon atoms...

Diels–Alder Reaction Forming Bridged Bicyclic Products: Stereochemistry 01:29

4.6K

Diels–Alder reactions between cyclic dienes locked in an s-cis configuration and dienophiles yield bridged bicyclic products.

Dienophiles with one or more electron-withdrawing substituents form stereochemically different products in which the substituents are oriented in an endo (towards) or exo (away) configuration relative to the double bond.

The endo isomer is formed faster and is the kinetic product. The exo isomer is more stable and is the thermodynamic...

Assembly of Cytoskeletal Filaments 01:18

19.2K

Cytoskeletal filaments are polymeric forms of smaller protein subunits. However, individual cytoskeletal filaments may easily disassemble or associate with other similar filaments to form rigid structures. Microfilaments, made of actin monomers, rely on actin-binding proteins to form bundles and create networks of individual actin filaments. Microtubules rely on microtubule-associated proteins (MAPs) to form sturdy cylindrical structures. However, the proteins involved in forming complex...

Structural Isomerism 02:34

19.2K

Isomerism in Complexes
Isomers are different chemical species that have the same chemical formula. Structural isomerism of coordination compounds can be divided into two subcategories, the linkage isomers and coordination-sphere isomers.
Linkage isomers occur when the coordination compound contains a ligand that can bind to the transition metal center through two different atoms. For example, the CN− ligand can bind through the carbon atom or through the nitrogen atom. Similarly, SCN− can...

Assembly of Signaling Complexes 01:30

5.7K

Multiprotein signaling complexes are formed in a dynamic process involving protein-protein interactions at the cytoplasmic domain of transmembrane receptors or enzymatic and non-enzymatic proteins associated with the receptor. These complexes ensure the activation and propagation of intracellular signals that regulate cell functions.
Interaction domains in cell signaling
Interaction domains recognize exposed features of their binding partners containing post-translationally modified sequences,...

[4+2] Cycloaddition of Conjugated Dienes: Diels–Alder Reaction 01:16

10.1K

The Diels–Alder reaction is an example of a thermal pericyclic reaction between a conjugated diene and an alkene or alkyne, commonly referred to as a dienophile. The reaction involves a concerted movement of six π electrons, four from the diene and two from the dienophile, forming an unsaturated six-membered ring. As a result, these reactions are classified as [4+2] cycloadditions.

From a molecular orbital perspective, the interacting lobes of the two π systems must be in phase...