Pairwise kinship inference and pedigree reconstruction using 91 microhaplotypes

  • 1West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
  • 2West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China. Electronic address: wangyufang@scu.edu.cn.
  • 3West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China. Electronic address: zhangj@scu.edu.cn.

Abstract

Kinship inference has been a major issue in forensic genetics, and it remains to be solved when there is no prior hypothesis and the relationships between multiple individuals are unknown. In this study, we genotyped 91 microhaplotypes from 46 pedigree samples using massive parallel sequencing and inferred their relatedness by calculating the likelihood ratio (LR). Based on simulated and real data, different treatments were applied in the presence and absence of relatedness assumptions. The pedigree of multiple individuals was reconstructed by calculating pedigree likelihoods based on real pedigree samples. The results showed that the 91 MHs could discriminate pairs of second-degree relatives from unrelated individuals. And more highly polymorphic loci were needed to discriminate the pairs of second-degree or more distant relative from other degrees of relationship, but correct classification could be obtained by expanding the suspected relationship searched to other relationships with lower LR values. Multiple individuals with unknown relationships can be successfully reconstructed if they are closely related. Our study provides a solution for kinship inference when there are no prior assumptions, and explores the possibility of pedigree reconstruction when the relationships of multiple individuals are unknown.

Related Concept Videos

Evolutionary Relationships through Genome Comparisons 02:54

5.7K

Genome comparison is one of the excellent ways to interpret the evolutionary relationships between organisms. The basic principle of genome comparison is that if two species share a common feature, it is likely encoded by the DNA sequence conserved between both species. The advent of genome sequencing technologies in the late 20th century enabled scientists to understand the concept of conservation of domains between species and helped them to deduce evolutionary relationships across diverse...

Pedigree Analysis 01:35

84.2K

Overview

A pedigree is a diagram displaying a family’s history of a trait. Analyzing pedigrees can reveal (1) whether a trait is dominant or recessive, (2) the type of chromosome, autosomal or sex, a trait is linked to, (3) genotypes of family members, and (4) probabilities of phenotypes in future generations. For families with a history of autosomal or sex-linked diseases, this information can be crucial to family planning.

Pedigrees Display Family Histories

In various plant and...

Gene Evolution - Fast or Slow? 02:05

7.1K

The genomes of eukaryotes are punctuated by long stretches of sequence which do not code for proteins or RNAs. Although some of these regions do contain crucial regulatory sequences, the vast majority of this DNA serves no known function. Typically, these regions of the genome are the ones in which the fastest change, in evolutionary terms, is observed, because there is typically little to no selection pressure acting on these regions to preserve their sequences.
In contrast, regions which code...

Genome-wide Association Studies-GWAS 01:11

13.3K

Genome-wide association studies or GWAS are used to identify whether common SNPs are associated with certain diseases. Suppose specific SNPs are more frequently observed in individuals with a particular disease than those without the disease. In that case, those SNPs are said to be associated with the disease. Chi-square analysis is performed to check the probability of the allele likely to be associated with the disease.
GWAS does not require the identification of the target gene involved in...

Single Nucleotide Polymorphisms-SNPs 01:05

15.0K

A single nucleotide polymorphism or SNP is a single nucleotide variation at a specific genomic position in a large population. It is the most prevalent type of sequence variation found in the human genome. Point mutations that occur in more than 1% of the population qualify as SNPs. These are present once every 1000 nucleotides on an average in the human genome. Replacement of a purine with another purine (A/G) or a pyrimidine with another pyrimidine (C/T) is known as a transition. In contrast,...

Hardy-Weinberg Principle 01:49

72.0K

Diploid organisms have two alleles of each gene, one from each parent, in their somatic cells. Therefore, each individual contributes two alleles to the gene pool of the population. The gene pool of a population is the sum of every allele of all genes within that population and has some degree of variation. Genetic variation is typically expressed as a relative frequency, which is the percentage of the total population that has a given allele, genotype or phenotype.

In the early 20th century,...