Exploring the mechanism of luteolin improving immune and inflammatory responses in systemic sclerosis based on systems biology and cell experiments

  • 0First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, PR China; Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Shushan, Hefei, Anhui 230038, PR China.
International immunopharmacology +

|

Abstract

There is a growing trend of applying traditional Chinese medicine (TCM) to treat immune diseases. This study reveals the possible mechanism of luteolin, an active ingredient in the core prescription of TCM, in alleviating systemic sclerosis (SSc) inflammation. Bibliometrics was performed to retrieve the core keywords of SSc inflammation. The key inflammatory indicators in the serum samples of 50 SSc patients were detected by ELISA. Data mining was applied for correlation analysis, association rule analysis, and binary logistic regression analysis on the clinical indicators and medication of 50 SSc patients before and after treatment to determine the core prescription. Network pharmacology was used for identifying candidate genes and pathways; molecular docking was conducted to determine the core monomer components of the prescription, providing a basis for subsequent in vitro molecular mechanism research. The effect of luteolin on SSc-human dermal fibroblasts (HDF) viability and inflammatory factors was evaluated by means of ELISA, RT-PCR, and Western blot. The role of TNF in inflammation was explored by using a TNF overexpression vector, NF-κB inhibitor (PKM2), and SSc-HDF. The involvement of TNF/NF-κB pathway was validated by RT-PCR, Western blot, and immunofluorescence. TCM treatment partially corrected the inflammatory changes in SSc patients, indicating its anti-inflammatory effects in the body. Atractylodes, Yam, Astragalus root, Poria cocos, Pinellia ternata, Salvia miltiorrhiza, Safflower, Cassia twig, and Angelica were identified as the core prescriptions for improving inflammatory indicators. Luteolin was the main active ingredient in the prescription and showed a strong binding energy with TNF and NF-κB. Luteolin exerted anti-inflammatory effects in vitro by reducing inflammatory cytokines in SSc-HDF and inhibiting the activation of TNF/NF-κB. Mechanistically, luteolin inhibited the activation of the TNF/NF-κB pathway in SSc-HDF, as manifested by an increase in extranuclear p-P65 and TNF but a decrease in intranuclear p-P65. Interestingly, the addition of PKM2 augmented the therapeutic function of luteolin against inflammation in SSc-HDF. Our study showed the TCM alleviates the inflammatory response of SSc by inhibiting the activation of the TNF/NF-κB pathway and is an effective therapeutic agent for the treatment of SSc.

Related Concept Videos

Inflammatory Response 01:28

1.9K

An inflammatory response is a localized, nonspecific immune reaction that occurs when a tissue is injured. It is characterized by redness, swelling, heat, and pain, which are commonly called the cardinal signs and symptoms of inflammation. Inflammation can sometimes result in a loss of function.
Inflammation can be triggered by various stimuli, such as impact, abrasion, chemical irritation, infections, and extreme hot or cold temperatures. These can damage cells and connective tissue fibers,...

T Cell Types and Functions 01:24

996

When T cells with CD4 markers are activated, they give rise to two types of effector cells: helper T cells and regulatory T cells. Meanwhile, T cells with CD8 markers differentiate into effector cytotoxic T cells. The differentiation of CD4 T cells into helper T cell subsets, such as Th1, Th2, and Th17 cells, is dependent on the antigen type, antigen-presenting cell, and regulatory cytokines.
Th1 cells stimulate dendritic cells to express necessary co-stimulatory molecules on their surfaces for...

The JAK-STAT Signaling Pathway 01:20

8.8K

Several cytokine receptors have tightly bound Janus kinase or JAK proteins attached at their cytosolic tail. Small signaling molecules such as cytokines, growth hormones, or prolactins bind to the cytokine receptors and initiate their dimerization. The dimerization brings the cytosolic JAKs together that trans-phosphorylate and activates each other. The activated JAKs now phosphorylate cytosolic tails of the cytokine receptors, which serve as binding sites for adaptor proteins such as  SH2...