The last of their kind: Is the genus Scutiger (Anura: Megophryidae) a relict element of the paleo-Transhimalaya biota?

  • 0Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, 53113 Bonn, Germany. Electronic address: s.hofmann@leibniz-lib.de.
Molecular phylogenetics and evolution +

|

Abstract

The orographic evolution of the Himalaya-Tibet Mountain system continues to be a subject of controversy, leading to considerable uncertainty regarding the environment and surface elevation of the Tibetan Plateau during the Cenozoic era. As many geoscientific (but not paleontological) studies suggest, elevations close to modern heights exist in vast areas of Tibet since at least the late Paleogene, implicating the presence of large-scale alpine environments for more than 30 million years. To explore a recently proposed alternative model that assumes a warm temperate environment across paleo-Tibet, we carried out a phylogeographic survey using genomic analyses of samples covering the range of endemic lazy toads (Scutiger) across the Himalaya-Tibet orogen. We identified two main clades, with several, geographically distinct subclades. The long temporal gap between the stem and crown age of Scutiger may suggest high extinction rates. Diversification within the crown group, depending on the calibration, occurred either from the Mid-Miocene or Late-Miocene and continued until the Holocene. The present-day Himalayan Scutiger fauna could have evolved from lineages that existed on the southern edges of the paleo-Tibetan area (the Transhimalaya = Gangdese Shan), while extant species living on the eastern edge of the Plateau originated probably from the eastern edges of northern parts of the ancestral Tibetan area (Hoh Xil, Tanggula Shan). Based on the Mid-Miocene divergence time estimation and ancestral area reconstruction, we propose that uplift-associated aridification of a warm temperate Miocene-Tibet, coupled with high extirpation rates of ancestral populations, and species range shifts along drainage systems and epigenetic transverse valleys of the rising mountains, is a plausible scenario explaining the phylogenetic structure of Scutiger. This hypothesis aligns with the fossil record but conflicts with geoscientific concepts of high elevated Tibetan Plateau since the late Paleogene. Considering a Late-Miocene/Pliocene divergence time, an alternative scenario of dispersal from SE Asia into the East, Central, and West Himalaya cannot be excluded, although essential evolutionary and biogeographic aspects remain unresolved within this model.

Related Concept Videos

Phylogenetic Trees 03:21

45.3K

Phylogenetic trees come in many forms. It matters in which sequence the organisms are arranged from the bottom to the top of the tree, but the branches can rotate at their nodes without altering the information. The lines connecting individual nodes can be straight, angled, or even curved.

The length of the branches can depict time or the relative amount of change among organisms. For instance, the branch length might indicate the number of amino acid changes in the sequence that underlies the...

Phylogeny 01:23

43.8K

Phylogeny is concerned with the evolutionary diversification of organisms or groups of organisms. A group of organisms with a name is called a taxon (singular). Taxa (plural) can span different levels of the evolutionary hierarchy. For instance, the group containing all birds is a taxon (comprising the class Aves), and the group of all species of daisies (the genus Bellis) is a taxon. Phylogenies can likewise include just one genus (i.e., depict species relationships) or span an entire kingdom.

The Fossil Record 02:56

25.1K

The fossil record documents only a small fraction of all organisms that have ever inhabited Earth. Fossilization is a rare process, and most organisms never become fossils. Moreover, the fossil record only exhibits fossils that have been discovered. Nevertheless, sedimentary rock fossils of long-lived, abundant, hard-bodied organisms dominate the fossil record. These fossils offer valuable information, such as an organism's physical form, behavior, and age. Studying the fossil record helps...

Evolutionary Relationships through Genome Comparisons 02:54

5.7K

Genome comparison is one of the excellent ways to interpret the evolutionary relationships between organisms. The basic principle of genome comparison is that if two species share a common feature, it is likely encoded by the DNA sequence conserved between both species. The advent of genome sequencing technologies in the late 20th century enabled scientists to understand the concept of conservation of domains between species and helped them to deduce evolutionary relationships across diverse...

Speciation Rates 01:07

21.1K

Overview

Speciation usually occurs over a long evolutionary time scale, during which the species may be isolated or continue to interact. If two emerging species start to interbreed, reproductive barriers may be weak, and gene flow can occur again. At this point, the selection of hybrids across the two populations may either stabilize the newly mixed group into a single population or reinforce the distinction between them as new species. Speciation may occur gradually or rapidly, and in some...

The Evidence for Evolution 02:55

42.6K

Genetic variations accumulating within populations over generations give rise to biological evolution. Evolutionary changes can result in the formation of novel varieties and entire new species. These changes are responsible for the diverse forms of life inhabiting the planet. The evidence for evolution suggests that all living organisms descended from common ancestors.

The collection of fossils within sedimentary rocks give a record of common ancestry and often depicts the history of...