JCVI: A versatile toolkit for comparative genomics analysis

  • 1Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Life Sciences Fujian Agriculture and Forestry University Fuzhou Fujian China.
  • 2J. Craig Venter Institute Rockville Maryland USA.
  • 3National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences Shenzhen Guangdong China.
  • 4National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE) Chinese Academy of Sciences (CAS) Shanghai China.
  • 5School of BioSciences The University of Melbourne Melbourne Victoria Australia.
  • 6Department of Biochemistry and Molecular Biology University of Nevada Reno Nevada USA.
  • 7State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources, Guangxi Key Lab for Sugarcane Biology Guangxi University Nanning Guangxi China.
+

|

Abstract

The life cycle of genome builds spans interlocking pillars of assembly, annotation, and comparative genomics to drive biological insights. While tools exist to address each pillar separately, there is a growing need for tools to integrate different pillars of a genome project holistically. For example, comparative approaches can provide quality control of assembly or annotation; genome assembly, in turn, can help to identify artifacts that may complicate the interpretation of genome comparisons. The JCVI library is a versatile Python-based library that offers a suite of tools that excel across these pillars. Featuring a modular design, the JCVI library provides high-level utilities for tasks such as format parsing, graphics generation, and manipulation of genome assemblies and annotations. Supporting genomics algorithms like MCscan and ALLMAPS are widely employed in building genome releases, producing publication-ready figures for quality assessment and evolutionary inference. Developed and maintained collaboratively, the JCVI library emphasizes quality and reusability.

Related Concept Videos

Evolutionary Relationships through Genome Comparisons 02:54

5.7K

Genome comparison is one of the excellent ways to interpret the evolutionary relationships between organisms. The basic principle of genome comparison is that if two species share a common feature, it is likely encoded by the DNA sequence conserved between both species. The advent of genome sequencing technologies in the late 20th century enabled scientists to understand the concept of conservation of domains between species and helped them to deduce evolutionary relationships across diverse...

Comparing Copy Number Variations and SNPs 02:26

17.7K

Sequencing of the human genome has opened up several best-kept secrets of the genome. Scientists have identified thousands of genome variations that exist within a population. These variations can be a single nucleotide or a larger chromosomal variation.
Copy number variations or CNVs are the structural variations that cover more than 1kb of DNA sequence. The single nucleotide polymorphism (SNP), on the other hand, is a single nucleotide change or a point mutation that is found in more than 1%...

Genomics 02:02

36.2K

Genomics is the science of genomes: it is the study of all the genetic material of an organism. In humans, the genome consists of information carried in 23 pairs of chromosomes in the nucleus, as well as mitochondrial DNA. In genomics, both coding and non-coding DNA is sequenced and analyzed. Genomics allows a better understanding of all living things, their evolution, and their diversity. It has a myriad of uses: for example, to build phylogenetic trees, to improve productivity and...

Genome-wide Association Studies-GWAS 01:11

13.3K

Genome-wide association studies or GWAS are used to identify whether common SNPs are associated with certain diseases. Suppose specific SNPs are more frequently observed in individuals with a particular disease than those without the disease. In that case, those SNPs are said to be associated with the disease. Chi-square analysis is performed to check the probability of the allele likely to be associated with the disease.
GWAS does not require the identification of the target gene involved in...

Comparing Mitochondrial, Chloroplast, and Prokaryotic Genomes 02:16

12.1K

The present-day mitochondrial and chloroplast genomes have retained some of the characteristics of their ancestral prokaryotes and also have acquired new attributes during their evolution within eukaryotic cells. Like prokaryotic genomes, mitochondrial and chloroplast genomes neither bind with histone-like proteins nor show complex packaging into chromosome-like structures, as observed in eukaryotes. Unlike mitotic cell divisions observed in eukaryotic cells, mitochondria and chloroplasts...

Next-generation Sequencing 03:00

88.5K

The first human genome sequencing project cost $2.7 billion and was declared complete in 2003, after 15 years of international cooperation and collaboration between several research teams and funding agencies. Today, with the advent of next-generation sequencing technologies, the cost and time of sequencing a human genome have dropped over 100 fold.
Next-Generation Sequencing Methods
Although all next-generation methods use different technologies, they all share a set of standard features....