Reductive samarium (electro)catalysis enabled by SmIII-alkoxide protonolysis

  • 1Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.

|

Abstract

Samarium diiodide (SmI2) is a privileged, single-electron reductant deployed in diverse synthetic settings. However, generalizable methods for catalytic turnover remain elusive because of the well-known challenge associated with cleaving strong SmIII-O bonds. Prior efforts have focused on the use of highly reactive oxophiles to enable catalyst turnover. However, such approaches give rise to complex catalyst speciation and intrinsically limit the synthetic scope. Herein, we leveraged a mild and selective protonolysis strategy to achieve samarium-catalyzed, intermolecular reductive cross-coupling of ketones and acrylates with broad scope. The modularity of our approach allows rational control of selectivity based on solvent, pKa (where Ka is the acid dissociation constant), and the samarium coordination sphere and provides a basis for future developments in catalytic and electrocatalytic lanthanide chemistry.

Related Concept Videos

Oxidation of Alkenes: Syn Dihydroxylation with Osmium Tetraoxide 02:44

10.0K

Alkenes are converted to 1,2-diols or glycols through a process called dihydroxylation. It involves the addition of two hydroxyl groups across the double bond with two different stereochemical approaches, namely anti and syn. Dihydroxylation using osmium tetroxide progresses with syn stereochemistry.

Syn Dihydroxylation Mechanism
The reaction comprises a two-step mechanism. It begins with the addition of osmium tetroxide across the alkene double bond in a concerted manner forming a...

Radical Oxidation of Allylic and Benzylic Alcohols 01:21

1.9K

Activated manganese(IV) oxide can selectively oxidize allylic and benzylic alcohols via a radical intermediate mechanism. Primary allylic alcohols are oxidized to aldehydes, while secondary allylic alcohols yield ketones. The redox reaction of potassium permanganate with an Mn(II) salt such as manganese sulfate (under either alkaline or acidic conditions), followed by thorough drying, yields the oxidizing agent: activated MnO2. While MnO2 is insoluble in the solvents used for the reaction, the...

Alkenes via Reductive Coupling of Aldehydes or Ketones: McMurry Reaction 01:22

1.9K

The radical dimerization of ketones or aldehydes gives vicinal diols through a pinacol coupling reaction. However, the behavior of titanium metals used for the reaction as a source of electrons is unusual. When the reaction is carried out in the presence of titanium, diols can be isolated at low temperatures. Else titanium further reacts with diols, forming alkenes through the McMurry reaction.

The reaction is a two-step process. The mechanism is still under study, but for some reagent...

Oxidation of Alkenes: Syn Dihydroxylation with Potassium Permanganate 02:21

11.2K

Alkenes can be dihydroxylated using potassium permanganate.  The method encompasses the reaction of an alkene with a cold, dilute solution of potassium permanganate under basic conditions to form a cis-diol along with a brown precipitate of manganese dioxide.

The mechanism begins with the syn addition of a permanganate ion (MnO4−) across the same side of the alkene π bond, forming a cyclic manganate ester intermediate. Next, the hydrolysis of the cyclic ester with water gives a cis-diol...

Oxymercuration-Reduction of Alkenes 02:36

7.5K

Oxymercuration–reduction of alkenes is one of the major reactions converting alkenes to alcohols. It involves the hydration of alkenes with mercuric acetate in a mixture of tetrahydrofuran and water, forming an organomercury adduct. This is followed by a demercuration step in which the adduct is reduced to an alcohol using sodium borohydride.

In the mixture of water and tetrahydrofuran, tetrahydrofuran acts as a solvent dissolving the alkene and the aqueous mercuric acetate solution, while...

Oxidation of Alcohols 02:37

12.9K

In this lesson, the oxidation of alcohols is discussed in depth. The various reagents used for oxidation of primary and secondary alcohols are detailed, and their mechanism of action is provided.
The process of oxidation in a chemical reaction is observed in any of the three forms:

(i) loss of one or more electrons,
(ii) loss of hydrogen,
(iii) addition of oxygen.

Oxidation is the opposite process of reduction, and hence, as carbonyls are reduced to alcohols, alcohols are oxidized to...