TRIP13 localizes to synapsed chromosomes and functions as a dosage-sensitive regulator of meiosis

  • 0Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, United States.
eLife +

|

Abstract

Meiotic progression requires coordinated assembly and disassembly of protein complexes involved in chromosome synapsis and meiotic recombination. Mouse TRIP13 and its ortholog Pch2 are instrumental in remodeling HORMA domain proteins. HORMAD proteins are associated with unsynapsed chromosome axes but depleted from the synaptonemal complex (SC) of synapsed homologs. Here we report that TRIP13 localizes to the synapsed SC in early pachytene spermatocytes and to telomeres throughout meiotic prophase I. Loss of TRIP13 leads to meiotic arrest and thus sterility in both sexes. Trip13-null meiocytes exhibit abnormal persistence of HORMAD1 and HOMRAD2 on synapsed SC and chromosome asynapsis that preferentially affects XY and centromeric ends. These major phenotypes are consistent with reported phenotypes of Trip13 hypomorph alleles. Trip13 heterozygous mice exhibit meiotic defects that are less severe than the Trip13-null mice, showing that TRIP13 is a dosage-sensitive regulator of meiosis. Localization of TRIP13 to the synapsed SC is independent of SC axial element proteins such as REC8 and SYCP2/SYCP3. Terminal FLAG-tagged TRIP13 proteins are functional and recapitulate the localization of native TRIP13 to SC and telomeres. Therefore, the evolutionarily conserved localization of TRIP13/Pch2 to the synapsed chromosomes provides an explanation for dissociation of HORMA domain proteins upon synapsis in diverse organisms.

Related Concept Videos

Meiosis II 02:02

45.1K

Meiosis II entails cell division and segregation of the sister chromatids, resulting in the production of four unique haploid gametes. The steps for meiosis II are similar to mitosis, except that meiosis II occurs in haploid cells, whereas mitosis occurs in diploid cells.
The timing and cell division patterns of meiosis differ between males and females. In male meiosis, the centrosomes are part of the formation of the meiotic spindle. However, in oocytes, including that of humans, Drosophila,...

Meiosis I 03:09

40.1K

Meiosis is the division of a diploid cell into haploid cells forming sperm and eggs in animals through differentiation. Meiosis I is the first stage of meiosis, where the genetic recombination of homologous chromosomes and the reduction of the ploidy level by half occurs.
Prophase I is the most extended and complex step of meiosis I characterized by synapsis, chromosome pairing, and recombination of the homologous chromosomes. This process is facilitated by a proteinaceous structure called the...

Cohesins 02:20

4.4K

Cohesin protein complexes are a molecular glue that holds two sister chromatids together. They play an important role both in mitosis and meiosis. In mitosis, all cohesin complexes present on the chromosomes are removed before the start of the anaphase stage.
Cohesin complexes in Meiotic Division
Meiosis involves two distinct rounds of chromosomal segregation and cell divisions— Meiosis I followed by Meiosis II – producing four daughter cells. Meiosis I includes the separation of...

Nondisjunction 01:29

75.3K

During meiosis, chromosomes occasionally separate improperly. This occurs due to failure of homologous chromosome separation during meiosis I or failed sister chromatid separation during meiosis II. In some species, notably plants, nondisjunction can result in an organism with an entire additional set of chromosomes, which is called polyploidy. In humans, nondisjunction can occur during male or female gametogenesis and the resulting gametes possess one too many or one too few chromosomes.

When...

Condensins 02:15

3.4K

Condensins are large protein complexes that use ATP to fuel the assembly of chromosomes during mitosis. They transform the tangled, shapeless mass of post-interphase DNA into individualized chromosomes by compacting, organizing, and segregating chromosomal DNA.
The plant and animal cells contain two types of condensin complexes—condensin I and condensin II. Both complexes have five subunits: two SMC (Structural Maintenance of Chromosomes) subunits, a kleisin subunit, and two HEAT-repeat...

Dosage Compensation 02:50

6.1K

In animals, gender is determined by the number and type of sex chromosome. For example, human females have two X chromosomes, and males have one X and one Y chromosome, whereas C.elegans with one X chromosome is a male, and the one with two X chromosomes is a hermaphrodite.
In addition to sexual development, the X chromosome has genes involved in autosomal functions such as brain development and the immune system. Therefore, males and females with  distinct numbers of X chromosomes will...