Enhancing catalytic efficiency of Bacillus subtilis laccase BsCotA through active site pocket design

  • 0School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.
Applied microbiology and biotechnology +

|

Abstract

BsCotA laccase is a promising candidate for industrial application due to its excellent thermal stability. In this research, our objective was to enhance the catalytic efficiency of BsCotA by modifying the active site pocket. We utilized a strategy combining the diversity design of the active site pocket with molecular docking screening, which resulted in selecting five variants for characterization. All five variants proved functional, with four demonstrating improved turnover rates. The most effective variants exhibited a remarkable 7.7-fold increase in catalytic efficiency, evolved from 1.54 × 105 M-1 s-1 to 1.18 × 106 M-1 s-1, without any stability loss. To investigate the underlying molecular mechanisms, we conducted a comprehensive structural analysis of our variants. The analysis suggested that substituting Leu386 with aromatic residues could enhance BsCotA's ability to accommodate the 2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonate (ABTS) substrate. However, the inclusion of charged residues, G323D and G417H, into the active site pocket reduced kcat. Ultimately, our research contributes to a deeper understanding of the role played by residues in the laccases' active site pocket, while successfully demonstrating a method to lift the catalytic efficiency of BsCotA. KEY POINTS: • Active site pocket design that enhanced BsCotA laccase efficiency • 7.7-fold improved in catalytic rate • All tested variants retain thermal stability.

Related Concept Videos

Ligand Binding and Linkage 00:49

4.8K

Allosteric proteins have more than one ligand binding site; the binding of a ligand to any of these sites influences the binding of ligands to the other sites. When a protein is allosteric, its binding sites are called coupled or linked.  In the case of enzymes, the site that binds to the substrate is known as the active site and the other site is known as the regulatory site. When a ligand binds to the regulatory site, this leads to conformational changes in the protein that can influence...

Allosteric Proteins-ATCase 01:19

5.7K

Binding sites linkages can regulate a protein's function.  For example, enzyme activity is often regulated through a feedback mechanism where the end product of the biochemical process serves as an inhibitor.
Aspartate transcarbamoylase (ATCase) is a cytosolic enzyme that catalyzes the condensation of L-aspartate and carbamoyl phosphate to  N-carbamoyl-L-aspartate. This reaction is the first step in pyrimidine biosynthesis. UTP and CTP, the end products of the pyrimidine synthesis...

Introduction to Mechanisms of Enzyme Catalysis 01:13

8.0K

For many years, scientists thought that enzyme-substrate binding took place in a simple "lock-and-key" fashion. This model stated that the enzyme and substrate fit together perfectly in one instantaneous step. However, current research supports a more refined view scientists call induced fit. The induced-fit model expands upon the lock-and-key model by describing a more dynamic interaction between enzyme and substrate. As the enzyme and substrate come together, their interaction causes...

Enzymes 02:34

81.2K

Inside living organisms, enzymes act as catalysts for many biochemical reactions involved in cellular metabolism. The role of enzymes is to reduce the activation energies of biochemical reactions by forming complexes with its substrates. The lowering of activation energies favor an increase in the rates of biochemical reactions.
Enzyme deficiencies can often translate into life-threatening diseases. For example, a genetic abnormality resulting in the deficiency of the enzyme G6PD...

Induced-fit Model 01:13

80.6K

Most chemical reactions in cells require enzymes—biological catalysts that speed up the reaction without being consumed or permanently changed. They reduce the activation energy needed to convert the reactants into products. Enzymes are proteins, that usually work by binding to a substrate—a reactant molecule that they act upon.
Enzymes exhibit substrate specificity, meaning that they can only bind to certain substrates. This is mainly determined by the shape and chemical...

Catalytically Perfect Enzymes 01:07

3.9K

The theory of catalytically perfect enzymes was first proposed by W.J. Albery and J. R. Knowles in 1976. These enzymes catalyze biochemical reactions at high-speed. Their catalytic efficiency values range from 108-109 M-1s-1. These enzymes are also called 'diffusion-controlled' as the only rate-limiting step in the catalysis is that of the substrate diffusion into the active site. Examples include triose phosphate isomerase, fumarase, and superoxide dismutase.
 
Most enzymes...