Intermolecular interactions in water and ethanol solution of ethyl acetate: Raman, DFT, MEP, FMO, AIM, NCI-RDG, ELF, and LOL analyses

  • 0Department of Optics and Spectroscopy, Samarkand State University, 15 University Blvd, 140104, Samarkand, Uzbekistan.
Journal of molecular modeling +

|

Abstract

CONTEXT

The intermolecular interactions of ethyl acetate (EtOAc)-water (H2O)/ethanol (EtOH) mixtures were investigated using a combination of Raman spectroscopy and quantum chemical calculations. The computational approach was used to analyze the structure of hydrogen-bonded complexes of ethyl acetate with water/ethanol molecules, based on density functional theory (DFT). The calculated frequencies closely matched the experimental Raman values, with differences being under 4%. Experimental data show that when the concentrations of ethyl acetate in the ethyl acetate/water/ethanol solutions were reduced, almost all Raman spectral bands are blue-shifted. The AIM analysis reveals that all the given complexes possess a positive energy density, indicating that the molecules interact electrostatically. The energy and bond length indicate that the methyl group forms relatively weak hydrogen bonds. Analysis indicates that EtOAc forms weak H-bonding C = O∙∙∙H and C-H∙∙∙O, which are recognized as van der Waals interactions. As the amount of ethyl acetate decreases in the complex, the interaction forces also decrease. This could also explain why the bands are blue-shifted. It was discovered that the title complexes' hydrogen bond energy decreased exponentially as bond length increased.

METHODS

The geometries of the molecular complexes were optimized using the Gaussian 09W program and the B3LYP/6-311 +  + G(d,p) set of functions. The potential energy distribution (PED) analysis was performed using VEDA 4.0 software. Raman spectra were drawn using the Origin 8.5 software. The Multiwfn 3.8 software was used to calculate topological parameters of electron density in molecular systems. GaussView 6.0 and Visual Molecular Dynamics (VMD) 1.9.3 tools were used to visualize all computational results.

Related Concept Videos

Physical Properties of Ethers 02:17

6.9K

Overview
An ether molecule has a net dipole moment due to the polarity of C–O bonds. Subsequently, boiling points of ethers are lower than those of alcohols of comparable molecular weight and slightly higher than those of hydrocarbons of comparable molecular weight (Table 1).
Ethers can act as hydrogen bond acceptors, making them more water-soluble than hydrocarbons, but since ethers cannot act as hydrogen bond donors, they are much less soluble in water than alcohols. Ethers are considered...

Intermolecular Forces and Physical Properties 02:56

20.5K



Intermolecular forces are attractive forces that exist between molecules. They dictate several bulk properties, such as melting points, boiling points, and solubilities (miscibilities) of substances. For example, a high-boiling-point liquid, like water (H2O, b.p. 100 °C), exhibits stronger intermolecular forces compared to a low-boiling-point liquid, like hexane (C6H14, b.p. 68.73 °C). The three kinds of intermolecular interactions include i) ion–dipole forces, ii)...

Van der Waals Interactions 01:24

63.6K

Atoms and molecules interact with each other through intermolecular forces. These electrostatic forces arise from attractive or repulsive interactions between particles with permanent, partial, or temporary charges. The intermolecular forces between neutral atoms and molecules are ion–dipole, dipole–dipole, and dispersion forces, collectively known as van der Waals forces.

Polar molecules have a partial positive charge on one end and a partial negative charge on the other end of...

Intermolecular Forces in Solutions 02:28

33.2K

The formation of a solution is an example of a spontaneous process, a process that occurs under specified conditions without energy from some external source.
When the strengths of the intermolecular forces of attraction between solute and solvent species in a solution are no different than those present in the separated components, the solution is formed with no accompanying energy change. Such a solution is called an ideal solution. A mixture of ideal gases (or gases such as helium and argon,...

Intermolecular Forces 03:13

57.9K

Atoms and molecules interact through bonds (or forces): intramolecular and intermolecular. The forces are electrostatic as they arise from interactions (attractive or repulsive) between charged species (permanent, partial, or temporary charges) and exist with varying strengths between ions, polar, nonpolar, and neutral molecules. The different types of intermolecular forces are ion–dipole, dipole–dipole, hydrogen bonds, and dispersion; among these, dipole–dipole, hydrogen...

¹H NMR of Labile Protons: Temporal Resolution 01:10

1.1K

Protons bonded to heteroatoms such as nitrogen and oxygen exhibit a range of chemical shift values. This is due to the varying degree of hydrogen bonding between the proton and the heteroatom in other molecules. The extent of hydrogen bonding affects the electron density around the proton, thereby giving different chemical shift values for the protons in the proton NMR spectrum.
The –OH proton in alcohols typically appears in the range of δ 2 to 5 ppm but can vary depending on the specific...