NoxO1 Determines the Level of ROS Formation by the Nox1-Centered NADPH Oxidase

  • 1Institute for Cardiovascular Physiology, Goethe University Frankfurt, 60298 Frankfurt, Germany.
  • 2German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, 60596 Frankfurt, Germany.

|

Abstract

The Nox1-centered NADPH oxidase complex facilitates the transfer of electrons from intracellular NADPH across the cell membrane to extracellular molecular oxygen, resulting in the formation of superoxide. The complex is comprised of two membrane-bound subunits, namely Nox1 and p22phox, and the cytosolic subunits, namely NoxA1 and NoxO1. The presence of NoxO1 facilitates the proximity of all components, thereby enabling the complex to exhibit constitutive activity. Despite the theoretical sufficiency of all subunits in a 1:1 ratio, the precise composition of the Nox1-centered NADPH oxidase remains unknown. Analyses of mRNA expression in different cell lines revealed an unequal expression of the components, with an excess of NoxO1. Furthermore, plasmid-based overexpression of individual components of the Nox1-centered NADPH oxidase resulted in an excess of NoxO1 mRNA. The objective of this study was to analyze the ability of NoxO1 to control the level of ROS formation by the Nox1 complex. To this end, we generated Hek293 cells for constitutive expression of Nox1 and NoxA1, which were then transfected with increasing concentrations of NoxO1. The data presented herein suggests that ROS formation by the Nox1-centered NADPH oxidase is dependent on the concentration of NoxO1. A surplus of NoxO1 has been observed to exert control over the activity of the complex in accordance with a dose-dependent mechanism. We thus conclude that the ratio of Nox1, NoxA1, and NoxO1 complexes does not adhere to a 1:1 ratio. Conversely, the availability of NoxO1 serves to regulate the formation of ROS by the Nox1-centered NADPH oxidase.

Related Concept Videos

Peroxisomes 01:24

11.2K

Peroxisomes are specialized organelles present in fungi, plant, and animal cells. It can vary in number, size, morphology, and activity depending on the type of tissue and the nutritional state of the cell. For example, cells with active lipid metabolism, such as adipocytes, neurons, and hepatocytes, have more peroxisomes than other cells in the body. Besides their primary role in breaking down complex organic molecules, peroxisomes can also synthesize specific macromolecules and participate in...

Nitric Oxide Signaling Pathway 01:28

5.0K

Nitric oxide (NO), an inorganic gas, acts as a potent second messenger in most animal and plant tissues. NO diffuses out of the cells that produce it and enters the neighboring cells to generate a downstream response. NO synthase (NOS) catalyzes NO production by the deamination of the amino acid arginine. There are three isoforms of NOS. Endothelial cells have endothelial NOS (eNOS), nerve and muscle cells have neuronal NOS (nNOS), and macrophages produce inducible NOS (iNOS) upon exposure...

Necrosis 01:16

4.4K

Necrosis is considered as an “accidental” or unexpected form of cell death that ends in cell lysis. The first noticeable mention of “necrosis” was in 1859 when Rudolf Virchow used this term to describe advanced tissue breakdown in his compilation titled “Cell Pathology”.
Morphological Manifestations of Necrosis
Necrotic cells show different types of morphological appearance depending on the type of tissue and infection. In coagulative necrosis, cells become...

Oxidation of Phenols to Quinones 01:17

2.9K

In the presence of oxidizing agents, phenols are oxidized to quinones. Quinones can be easily reduced back to phenols using mild reducing agents. The electron-donating hydroxyl group enhances the reactivity of the aromatic ring, enabling oxidation of the ring even in the absence of an α hydrogen.
o-hydroxy phenols are oxidized to o-quinones and p-hydroxy phenols to p-quinones. Such redox reactions involve the transfer of two electrons and two protons. The reversible redox...

Regulation of Nuclear Protein Sorting 01:45

2.4K

Nuclear protein sorting regulates nucleus composition and gene expression, crucial for determining the fate of a eukaryotic cell. Hence, the entry and exit of molecules across the nuclear envelope is a tightly controlled process. Nuclear protein sorting can be inhibited by one of the following ways: 1) masking cargo signal sequences, 2) modifying the nuclear receptor's affinity for cargo, 3) controlling the nuclear pore size, 4) retaining the cargo during its transit to the cytosol or the...

Radical Autoxidation 01:20

2.1K

The oxidation of an organic compound in the presence of air or oxygen is called autoxidation. For example, cumene reacts with oxygen to form hydroperoxide. Autoxidation involves initiation, propagation, and termination steps. Many organic compounds are susceptible to autoxidation—especially ethers in the presence of oxygen, which form hydroperoxides. Even though this reaction is slow, old ether bottles contain small amounts of peroxide, which leads to laboratory explosions during ether...