A solution to the anti-Bredt olefin synthesis problem

  • 0Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.
Science (New York, N.Y.) +

|

Abstract

The π-bonds in unsaturated organic molecules are typically associated with having well-defined geometries that are conserved across diverse structural contexts. Nonetheless, these geometries can be distorted, leading to heightened reactivity of the π-bond. Although π-bond-containing compounds with bent geometries are well utilized in synthetic chemistry, the corresponding leveraging of π-bond-containing compounds that display twisting or pyramidalization remains underdeveloped. We report a study of perhaps the most notorious class of geometrically distorted molecules that contain π-bonds: anti-Bredt olefins (ABOs). ABOs have been known since 1924, and conventional wisdom maintains that ABOs are difficult or impossible to access. We provide a solution to this long-standing problem. Our study also highlights the strategic manipulation of compounds that display considerable distortion arising from the presence of geometrically constrained π-bonds.

Related Concept Videos

Olefin Metathesis Polymerization: Acyclic Diene Metathesis (ADMET) 00:53

1.9K

Acyclic diene metathesis polymerization or ADMET polymerization involves cross-metathesis of terminal dienes, such as 1,8-nonadiene, to give linear unsaturated polymer and ethylene. As ADMET is a reversible process, the formed ethylene gas must be removed from the reaction mixture to complete the polymerization process.
Similar to cross-metathesis, ADMET also involves the formation of metallacyclobutane intermediate by [2+2] cycloaddition of one of the double bonds of a terminal diene with...

Olefin Metathesis Polymerization: Overview 01:13

2.0K

Recently, the development of olefin metathesis polymerization advanced the field of polymer synthesis. Simply put, the reorganization of substituents on their double bonds between two olefins in the presence of a catalyst is known as the olefin metathesis reaction. The use of metathesis reaction for polymer synthesis is called olefin metathesis polymerization.
Ruthenium-based Grubbs catalyst is the most commonly used catalyst for olefin metathesis polymerization. Grubbs catalyst consists...

Hydroboration-Oxidation of Alkenes 03:08

7.9K

In addition to the oxymercuration–demercuration method, which converts the alkenes to alcohols with Markovnikov orientation, a complementary hydroboration-oxidation method yields the anti-Markovnikov product. The hydroboration reaction, discovered in 1959 by H.C. Brown, involves the addition of a B–H bond of borane to an alkene giving an organoborane intermediate. The oxidation of this intermediate with basic hydrogen peroxide forms an alcohol.

Borane as a reagent is very reactive, as the...

Diels–Alder Reaction Forming Cyclic Products: Stereochemistry 01:28

3.8K

The Diels–Alder reaction is one of the robust methods for synthesizing unsaturated six-membered rings. The reaction involves a concerted cyclic movement of six π electrons: four π electrons from the diene and two π electrons from the dienophile.

For the electrons to flow seamlessly between the two π systems, specific stereochemical and conformational requirements must be met.
Stereochemical Orbital Symmetry
The frontier molecular orbitals that satisfy the symmetry...

Aldol Condensation with β-Diesters: Knoevenagel Condensation 01:27

3.0K

The Knoevenagel condensation is an aldol-type reaction involving the condensation of aldehydes or ketones with active methylene compounds such as β-diesters to produce substituted olefins.

The reaction is catalyzed by amine base, which abstracts the acidic α hydrogen of the activated methylene to generate a resonance stabilized enolate ion. The basic strength of the amine is insufficient to form the enolate of aldehydes or ketones. However, it acts as a nucleophile that attacks the carbonyl...

Diels–Alder Reaction Forming Bridged Bicyclic Products: Stereochemistry 01:29

4.6K

Diels–Alder reactions between cyclic dienes locked in an s-cis configuration and dienophiles yield bridged bicyclic products.

Dienophiles with one or more electron-withdrawing substituents form stereochemically different products in which the substituents are oriented in an endo (towards) or exo (away) configuration relative to the double bond.

The endo isomer is formed faster and is the kinetic product. The exo isomer is more stable and is the thermodynamic...