Identification of a minimal strong translation enhancer within the 5'-untranslated region of OsMac3 mRNA

  • 0Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan.
Plant biotechnology (Tokyo, Japan) +

|

Abstract

The long 5' untranslated region (5'UTR) exhibits enhancer activity in translation of rice OsMac3 mRNA. In this report, we describe elements of OsMac3 5'UTR that may be responsible for its enhancer activity, including a long uORF and several secondary structure elements. OsMac3 5'UTR can be dissected into three stem-loop structures SL1, small SL and SL2, where the uORF starts within SL1 and ends within SL2. As expected, uORF inhibits translation of downstream ORF since deletion of the uORF AUG or the SL1 stem-loop increases translation by approximately two-fold. Thus, the 158 nt 3' region of the 5'UTR lacking SL1 together with the AUG uORF, which has significant enhancer activity, was named dMac3. We investigated two critical regions within dMac3 mRNA that influence its translation: SL2, which destabilization potentially decreases translation activity, and another 13 nt located downstream of SL2. We further confirmed that dMac3 promotes mRNA translation initiation in an in vitro translation system and during transient expression in either cultured cells or Nicotiana benthamiana leaves. Thus, the dMac3 5'UTR is a useful tool for efficient protein production in various in vitro and in vivo translation systems.

Related Concept Videos

Leaky Scanning 02:28

5.0K

During most eukaryotic translation processes, the small 40S ribosome subunit scans an mRNA from its 5' end until it encounters the first start AUG codon. The large 60S ribosomal subunit then joins the smaller one to initiate protein synthesis. The location of the translation initiation is largely determined by the nucleotides near the start codon as there may be multiple translation initiation sites present on the mRNA.  Marilyn Kozak discovered that the sequence RCCAUGG (where R...

Initiation of Translation 02:33

30.1K

Initiating translation is complex because it involves multiple molecules. Initiator tRNA, ribosomal subunits, and eukaryotic initiation factors (eIFs) are all required to assemble on the initiation codon of mRNA. This process consists of several steps that are mediated by different eIFs.
First, the initiator tRNA must be selected from the pool of elongator tRNAs by eukaryotic initiation factor 2 (eIF2). The initiator tRNA (Met-tRNAi) has conserved sequence elements including modified bases at...

The Eukaryotic Promoter Region 02:40

16.1K

The eukaryotic promoter region is a segment of DNA located upstream of a gene. It contains an RNA polymerase binding site, a transcription start site, and several cis-regulatory sequences.  The proximal promoter region is located in the vicinity of the gene and has cis-regulatory sequences and the core promoter. The core promoter is the binding site for RNA polymerase and is usually located between -35 and +35 nucleotides from the transcription start site. The distal promoter regions are...

Ribosome Profiling 02:24

3.4K

Ribosome profiling or ribo-sequencing is a deep sequencing technique that produces a snapshot of active translation in a cell. It selectively sequences the mRNAs protected by ribosomes to get an insight into a cell’s translation landscape at any given point in time.
Applications of ribosome profiling
Ribosome profiling has many applications, including in vivo monitoring of translation inside a particular organ or tissue type and quantifying new protein synthesis levels.
The technique...

Transcription Elongation Factors 02:35

3.3K
RNA Polymerase II Accessory Proteins 02:36

9.1K

Proteins that regulate transcription can do so either via direct contact with RNA Polymerase or through indirect interactions facilitated by adaptors, mediators, histone-modifying proteins, and nucleosome remodelers. Direct interactions to activate transcription is seen in bacteria as well as in some eukaryotic genes. In these cases, upstream activation sequences are adjacent to the promoters, and the activator proteins interact directly with the transcriptional machinery. For example, in...