Tuning Ultrasensitivity in Genetic Logic Gates Using Antisense RNA Feedback

  • 1Department of Electrical Engineering and Information Technology, TU Darmstadt, Darmstadt 64283, Germany.
  • 2Graduate School Life Science Engineering, TU Darmstadt, Darmstadt 64283, Germany.
  • 3Centre for Synthetic Biology, TU Darmstadt, Darmstadt 64283, Germany.

|

Abstract

Inverting genetic logic gates fueled by transcriptional repression is an established building block in genetic circuit design. Often, the gates' dose-response curves require large changes in dose to transition between logic ON and OFF states, potentially leading to logically indeterminate intermediate states when gates are connected. Additionally, leakage in the OFF state is a general concern, especially at the output stages of a circuit. This study explores the potential to improve inverting logic gates through the introduction of an additional sequestration reaction between the input and output chemical species of the gate. As a mechanism of study, we employ antisense RNAs (asRNAs) expressed alongside the mRNA (mRNA) of the logic gate within single transcripts. These asRNAs target mRNAs of adjacent gates and create additional feedback that supports the protein-mediated repression of the gates. Numerical and symbolic analysis indicates that the sequestration steepens the gate's dose-response curve, reduces leakage, and can potentially be used to adjust the location of logic transition. To leverage these effects, we demonstrate how design parameters can be tuned to obtain desired dose-response curves and outline how arbitrary combinational circuits can be assembled using the improved gates. Finally, we also discuss an implementation using split transcripts.

Related Concept Videos

Experimental RNAi 02:15

6.0K

RNA interference (RNAi) is a cellular mechanism that inhibits gene expression by suppressing its transcription or activating the RNA degradation process. The mechanism was discovered by Andrew Fire and Craig Mello in 1998 in plants. Today, it is observed in almost all eukaryotes, including protozoa, flies, nematodes, insects, parasites, and mammals. This precise cellular mechanism of gene silencing has been developed into a technique that provides an efficient way to identify and determine the...

RNA Interference 01:23

25.9K

RNA interference (RNAi) is a process in which a small non-coding RNA molecule blocks the post-transcriptional expression of a gene by binding to its messenger RNA (mRNA) and preventing the protein from being translated.
This process occurs naturally in cells, often through the activity of genomically-encoded microRNAs. Researchers can take advantage of this mechanism by introducing synthetic RNAs to deactivate specific genes for research or therapeutic purposes. For example, RNAi could be used...

siRNA - Small Interfering RNAs 02:30

16.4K

Small interfering RNAs, or siRNAs, are short regulatory RNA molecules that can silence genes post-transcriptionally, as well as the transcriptional level in some cases. siRNAs are important for protecting cells against viral infections and silencing transposable genetic elements.
In the cytoplasm, siRNA is processed from a double-stranded RNA, which comes from either endogenous DNA transcription or exogenous sources like a virus. This double-stranded RNA is then cleaved by the...

In-vitro Mutagenesis 01:16

13.7K

To learn more about the function of a gene, researchers can observe what happens when the gene is inactivated or “knocked out,” by creating genetically engineered knockout animals. Knockout mice have been particularly useful as models for human diseases such as cancer, Parkinson’s disease, and diabetes.

The Process

Genes can be randomly knocked out, or specific genes can be targeted. To knock out a particular gene, an engineered piece of DNA called a targeting vector is used...

Feedback Inhibition 00:46

53.5K

Biochemical reactions are occurring constantly in cells, converting starting substances to different products, usually with the help of enzymes that speed the reactions. Without enzymes, it would take far too long for most reactions to occur to be useful to the cell!

Since enzymes help control the rate of reactions, their activity is regulated so that appropriate amounts of starting materials, intermediate metabolites, and products are maintained in the cell. Excessive build-up or depletion of...

Transcription Attenuation in Prokaryotes 02:42

15.1K

Transcriptional attenuation occurs when RNA transcription is prematurely terminated due to the formation of a terminator mRNA hairpin structure.  Bacteria use these hairpins to regulate the transcription process and control the synthesis of several amino acids including histidine, lysine, threonine, and phenylalanine. Transcription attenuation takes place in the non-coding regions of mRNA.
There are several different mechanisms used to attenuate transcription. In ribosome mediated...