Correction: Transparency improves the accuracy of automation use, but automation confidence information does not
Related Concept Videos


Scientists typically make repeated measurements of a quantity to ensure the quality of their findings and to evaluate both the precision and the accuracy of their results. Measurements are said to be precise if they yield very similar results when repeated in the same manner. A measurement is considered accurate if it yields a result that is very close to the true or the accepted value. Precise values agree with each other; accurate values agree with a true value.
Suppose a quality...

Scientists always try their best to record measurements with the utmost accuracy and precision. However, sometimes errors do occur. These errors can be random or systematic. Random errors are observed due to the inconsistency or fluctuation in the measurement process, or variations in the quantity itself that is being measured. Such errors fluctuate from being greater than or less than the true value in repeated measurements. Consider a scientist measuring the length of an earthworm using a...

In the case of systematic errors, the sources can be identified, and the errors can be subsequently minimized by addressing these sources. According to the source, systematic errors can be divided into sampling, instrumental, methodological, and personal errors.
Sampling errors originate from improper sampling methods or the wrong sample population. These errors can be minimized by refining the sampling strategy. Defective instruments or faulty calibrations are the sources of instrumental...

Hypothesis testing is a fundamental statistical tool that begins with the assumption that the null hypothesis H0 is true. During this process, two types of errors can occur: Type I and Type II. A Type I error refers to the incorrect rejection of a true null hypothesis, while a Type II error involves the failure to reject a false null hypothesis.
In hypothesis testing, the probability of making a Type I error, denoted as α, is commonly set at 0.05. This significance level indicates a 5%...

In analytical chemistry, we often perform repetitive measurements to detect and minimize inaccuracies caused by both determinate and indeterminate errors. Despite the cares we take, the presence of random errors means that repeated measurements almost never have exactly the same magnitude. The collective difference between these measurements - observed values - and the estimated or expected value is called uncertainty. Uncertainty is conventionally written after the estimated or expected value.