Comprehensive Characterization and Comparison of Aroma Profiles of Tricholoma matsutake Soup During the Cooking Process by HS-GC-IMS and HS-SPME-GC-MS

  • 0Key Laboratory of Sichuan Cuisine Artificial Intelligence, Sichuan Tourism University, Chengdu 610100, China.
Foods (Basel, Switzerland) +

|

Abstract

Many scholars have studied Tricholoma matsutake soup, but there are relatively few studies exploring the aroma changes during its cooking process using different detection methods. The aroma of T. matsutake soup was analyzed and compared using electronic nose (E-nose) analysis, headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), and headspace-solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). A significant effect of cooking time on the overall aroma profile of T. matsutake soup was identified through E-nose analysis. By HS-GC-IMS and HS-SPME-GC-MS analysis, 51 volatile aroma compounds were detected, with alcohols and aldehydes identified as the main aroma substances. Based on the relative odor activity value (ROAV) and multivariate statistical analysis, 1-octen-3-ol, 1-octanol, methyl cinnamate, and 2-pentyl furan were determined to be the key aroma compounds in the cooking process. We observed that shorter cooking time preserved the mushroom aroma of T. matsutake soup most effectively. These findings can be utilized for the industrial production of T. matsutake soup and for optimization of its key aroma components.

Related Concept Videos

Aromatic Compounds: Overview 01:25

10.0K

In general, the term ‘aromatic’ indicates a pleasant smell or fragrance from fresh flowers, freshly prepared coffee, etc. In the early history of organic chemistry, many benzene derivatives were isolated from the pleasant odor oils of the plants. For example, vanillin was isolated from the oil of vanilla, methyl salicylate from the oil of wintergreen, and cinnamaldehyde from the oil of cinnamon. They all had a pleasant odor; hence the name aromatic was given.
In 1825, Faraday...

NMR Spectroscopy of Aromatic Compounds 01:14

4.3K

Aromatic compounds can be identified or analyzed using proton NMR and carbon‐13 NMR. Typically, aromatic hydrogens or hydrogens directly bonded to the aromatic rings are strongly deshielded by the aromatic ring current. Therefore, they absorb in the range of 6.5–8.0 ppm in proton NMR spectra. For instance, aromatic hydrogens directly bonded to the benzene ring absorb at 7.3 ppm. However, aromatic hydrogens of larger rings absorb farther upfield or downfield than the ideal range.

Mass Spectrometry: Aromatic Compound Fragmentation 01:23

1.5K

Upon ionization, aromatic compounds generate a molecular ion that is observed as a prominent peak in their mass spectra. For example, the molecular ion peak for benzene appears at a mass-to-charge ratio of 78, while toluene is observed at a mass-to-charge ratio of 92. The molecular ion benzene is highly stable and does not readily undergo further fragmentation due to the significant amount of energy required to disrupt the aromatic stability of the benzene ring. In contrast, the molecular ion...

¹H NMR Signal Integration: Overview 00:58

1.3K

The intensity of a signal, which can be represented by the area under the peak, depends on the number of protons contributing to that signal. The area under each peak is shown as a vertical line called an integral, with the integral value listed under it, as seen in the proton NMR spectrum of benzyl acetate. Each integral value is divided by the smallest integral value to obtain the ratio of the number of protons producing each signal. The ratio reveals the relative number of protons and not...

Qualitative Analysis 01:10

194

Qualitative analysis is the process of identifying elements, ions, or compounds in an unknown sample. It is the first and most fundamental type of analysis based on the hierarchy of analytical goals. This hierarchy is significant as it provides a structured approach to scientific research, with qualitative analysis serving as the initial step, providing essential information before moving on to quantitative or other forms of analysis.
There are two main approaches to qualitative analysis:...

Attenuated Total Reflectance (ATR) Infrared Spectroscopy: Overview 01:13

244

Attenuated total reflectance (ATR) infrared spectroscopy is a powerful analytical technique used to study the composition of materials. It is widely employed in chemistry, materials science, forensic science, and other fields where sample characterization is required. ATR has several advantages over traditional transmission IR spectroscopy, including the requirement of little to no sample preparation and the ability to analyze a wide range of samples.
The ATR process begins by directing a beam...