How Does Audio Influence Visual Attention in Omnidirectional Videos? Database and Model

Abstract

Understanding and predicting viewer attention in omnidirectional videos (ODVs) is crucial for enhancing user engagement in virtual and augmented reality applications. Although both audio and visual modalities are essential for saliency prediction in ODVs, the joint exploitation of these two modalities has been limited, primarily due to the absence of large-scale audio-visual saliency databases and comprehensive analyses. This paper comprehensively investigates audio-visual attention in ODVs from both subjective and objective perspectives. Specifically, we first introduce a new audio-visual saliency database for omnidirectional videos, termed AVS-ODV database, containing 162 ODVs and corresponding eye movement data collected from 60 subjects under three audio modes including mute, mono, and ambisonics. Based on the constructed AVS-ODV database, we perform an in-depth analysis of how audio influences visual attention in ODVs. To advance the research on audio-visual saliency prediction for ODVs, we further establish a new benchmark based on the AVS-ODV database by testing numerous state-of-the-art saliency models, including visual-only models and audio-visual models. In addition, given the limitations of current models, we propose an innovative omnidirectional audio-visual saliency prediction network (OmniAVS), which is built based on the U-Net architecture, and hierarchically fuses audio and visual features from the multimodal aligned embedding space. Extensive experimental results demonstrate that the proposed OmniAVS model outperforms other state-of-the-art models on both ODV AVS prediction and traditional AVS prediction tasks. The AVS-ODV database and the OmniAVS model are available at: https://github.com/IntMeGroup/AVS-ODV.

Related Concept Videos

Auditory Perception 01:17

288

The auditory system is essential for sound perception, utilizing various critical structures. When sound waves enter the outer ear, they travel through the ear canal and cause the eardrum to vibrate. These vibrations are then transmitted to the middle ear, where three tiny bones – the malleus, incus, and stapes – amplify the sound. This amplification is crucial, as it ensures that the sound vibrations are strong enough to be conveyed to the inner ear. These vibrations then reach the...

Perceiving Loudness, Pitch, and Location 01:21

167

The human brain perceives pitch through two primary mechanisms reflected in place theory and frequency theory. Each mechanism describes how sound waves are interpreted as specific pitches by the brain, offering insights into the intricate processes of auditory perception.
Place theory, or place coding, suggests that different pitches are heard because various sound waves activate specific locations along the cochlea's basilar membrane. The brain determines the pitch of a sound by...

Depth Perception and Spatial Vision 01:15

483

Depth perception is the ability to perceive objects three-dimensionally. It relies on two types of cues: binocular and monocular. Binocular cues depend on the combination of images from both eyes and how the eyes work together. Since the eyes are in slightly different positions, each eye captures a slightly different image. This disparity between images, known as binocular disparity, helps the brain interpret depth. When the brain compares these images, it determines the distance to an object.

Perception of Sound Waves 01:01

4.4K

The human ear is not equally sensitive to all frequencies in the audible range. It may perceive sound waves with the same pressure but different frequencies as having different loudness. Moreover, the perception of sound waves depends on the health of an individual's ears, which decays with age. The health of one's ears may also be affected by regular exposure to loud noises.
The pitch of a sound depends on the frequency and the pressure amplitude of the source. Two sounds of the same...

Factors Affecting Perception 01:25

1.4K

Perception is influenced by perceptual set, context, motivation, and emotion. Perceptual set, or perceptual expectancy, refers to the tendency to perceive things in a particular way, influenced by previous experiences and expectations. This phenomenon affects the interpretation of stimuli, creating a set of mental tendencies and assumptions that impact sensory perceptions of sound, taste, touch, and sight.
An illustrative example of a perceptual set is the scenario where an airline pilot told...