Investigations of optical aberration on quantum diamond microscopy toward high spatial resolution and sensitivity

  • 1Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
  • 2Institute for Physics of Intelligence, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
  • 3Trans-Scale Quantum Science Institute, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.

Abstract

Quantum diamond microscopy (QDM), which employs nitrogen-vacancy (NV) center ensembles, is a promising approach to quantitatively imaging magnetic fields with both high resolution that approaches the diffraction limit and a wide field of view. The commonly adopted setups of QDM capture the photoluminescence through transparent diamonds, which inevitably entail aberrations-optical errors that degrade the optical resolution and contrast of the obtainable image. In this study, we delve into the impact of optical aberrations, focusing on their dependence on diamond thickness. We first introduce a rigorous model [B. Richards et al., Proc. R. Soc. London, Ser. A 253, 358-379 (1959) and J. Braat et al., J. Opt. Soc. Am. A 20, 2281-2292 (2003)] of diffraction that incorporates aberrations, producing the NV center optical image. We confirm that this model accurately reproduces the confocal images of single NV centers obtained at various depths in diamonds. Extending this model to a wide-field microscope, we find that the model also accurately reproduces the USAF 1951 resolution test chart obtained through diamonds of various thicknesses. Based on these investigations, we quantitatively assess the consequent resolution constraints and propose thinning the diamond as a viable solution. We present a robust method to quantitatively ascertain resolution in optical systems influenced by aberrations caused by ray transmission through diamonds. For instance, for a typical microscope with an objective lens of NA = 0.7, the diffraction limit is achievable through diamonds that are 30 μm thick, and a resolution of 1 μm is obtained through diamonds that are 100 μm thick. Those results open up avenues for enhanced performance in QDM.

Related Concept Videos

Imaging Biological Samples with Optical Microscopy 01:18

4.5K

Optical microscopy uses optic principles to provide detailed images of samples. Antonie van Leeuwenhoek designed the first compound optical microscope in the 17th century to visualize blood cells, bacteria, and yeast cells. In 1830, Joseph Jackson Lister created an essentially modern light microscope. The 20th century saw the development of microscopes with enhanced magnification and resolution.
In optical microscopy, the specimen to be viewed is placed on a glass slide and clipped on the stage...

Super-resolution Fluorescence Microscopy 01:37

6.8K

Super-resolution fluorescence microscopy (SRFM) provides a better resolution than conventional fluorescence microscopy by reducing the point spread function (PSF). PSF is the light intensity distribution from a point that causes it to appear blurred. Due to PSF, each fluorescing point appears bigger than its actual size, and it is the PSF interference of nearby fluorophores that causes the blurred image. Various approaches to achieving higher resolution through SRFM have recently been...

Confocal Fluorescence Microscopy 01:16

12.8K

Confocal microscopy is an advanced microscopic technique. The prime advantage of the confocal microscope over other microscopy techniques is its ability to block the out-of-focus light from the illuminated samples using pinholes. It is widely used with fluorescence optics to obtain high-resolution, sharp contrast images. Unlike optical microscopes, confocal microscopes use a focused beam of light laser to scan the entire sample surface at different z-planes. These microscopes are, therefore,...

Atomic Force Microscopy 01:08

3.3K

Atomic force microscopy (AFM) is a type of scanning probe microscopy that can analyze topographic details of various specimens like ceramics, glass, polymers, and biological samples. AFM offers over 1000 times more resolution than the optical imaging system. Images generated from AFM are three-dimensional surface profiles, offering an advantage over the flat, two-dimensional images from other imaging techniques.
The AFM Probe
The probe is regarded as the heart of any AFM setup and comprises the...

Phase Contrast and Differential Interference Contrast Microscopy 01:26

7.3K

Phase-Contrast Microscopes
In-phase-contrast microscopes, interference between light directly passing through a cell and light refracted by cellular components is used to create high-contrast, high-resolution images without staining. It is the oldest and simplest type of microscope that creates an image by altering the wavelengths of light rays passing through the specimen. Altered wavelength paths are created using an annular stop in the condenser. The annular stop produces a hollow cone of...