Comparison of Biological and Genomic Characteristics Between Two Non-Intestinal Salmonella Enterica Serovar Enteritidis Isolates from the Same Patient

  • 1Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

Abstract

This study investigates two isolates of Salmonella enterica subspecies enterica serovar Enteritidis (S. Enteritidis), designated Sal B and Sal D, isolated from the blood and pleural fluid, respectively, of the same patient. Drug susceptibility testing revealed significant differences: Sal D exhibited greater resistance to ticarcillin/clavulanate, piperacillin/sulbactam, and ciprofloxacin compared with Sal B. Morphologically, Sal B formed rougher and drier colonies than Sal D at 37°C. Sal B demonstrated significantly stronger biofilm-forming ability and higher adhesion capacity to HaCaT cells than Sal D, whereas Sal D showed superior adaptation to acidic conditions (pH 3.0). Virulence assays indicated no significant differences between the isolates, suggesting comparable pathogenic potential. Comparative genomic analysis showed high gene content conservation but identified two nonsynonymous single-nucleotide polymorphisms (nsSNPs) and an insertion in the envZ and siiE genes. These genetic variations may account for the observed differences in drug susceptibility and biological characteristics. Collectively, these findings suggest that S. Enteritidis can undergo adaptive changes in response to distinct host environments, influencing drug resistance, adhesion, and acid resistance. This knowledge may inform future strategies for the treatment and prevention of Salmonella infections.

Related Concept Videos

Evolutionary Relationships through Genome Comparisons 02:54

5.6K

Genome comparison is one of the excellent ways to interpret the evolutionary relationships between organisms. The basic principle of genome comparison is that if two species share a common feature, it is likely encoded by the DNA sequence conserved between both species. The advent of genome sequencing technologies in the late 20th century enabled scientists to understand the concept of conservation of domains between species and helped them to deduce evolutionary relationships across diverse...

Gene Evolution - Fast or Slow? 02:05

7.0K

The genomes of eukaryotes are punctuated by long stretches of sequence which do not code for proteins or RNAs. Although some of these regions do contain crucial regulatory sequences, the vast majority of this DNA serves no known function. Typically, these regions of the genome are the ones in which the fastest change, in evolutionary terms, is observed, because there is typically little to no selection pressure acting on these regions to preserve their sequences.
In contrast, regions which code...

Genomics 02:02

35.6K

Genomics is the science of genomes: it is the study of all the genetic material of an organism. In humans, the genome consists of information carried in 23 pairs of chromosomes in the nucleus, as well as mitochondrial DNA. In genomics, both coding and non-coding DNA is sequenced and analyzed. Genomics allows a better understanding of all living things, their evolution, and their diversity. It has a myriad of uses: for example, to build phylogenetic trees, to improve productivity and...

Types of Genetic Transfer Between Organisms 02:18

26.9K

Genetic transfer occurs when genetic information is passed from one organism to another. It occurs via two mechanisms: vertical gene transfer and horizontal gene transfer. Vertical gene transfer occurs when genetic information is transferred from one generation to the next, which happens much more frequently than horizontal gene transfer. Both sexual and asexual reproduction are forms of vertical gene transfer, where one or more organisms pass some or all of their genome onto their progeny.

Multi-species Conserved Sequences 02:51

3.9K

Next-generation sequencing technologies have created large genomic databases of a variety of animals and plants. Ever since the human genome project was completed, scientists studied the genome of primates, mammals, and other phylogenetically distant living beings. Such large-scale  studies have provided new insights into the evolutionary relationship between organisms.
Although the genome of each species varies greatly from each other, a few sequences are highly conserved. Such conserved...

Genome Size and the Evolution of New Genes 03:21

7.8K

While every living organism has a genome of some kind (be it RNA, or DNA), there is considerable variation in the sizes of these blueprints. One major factor that impacts genome size is whether the organism is prokaryotic or eukaryotic. In prokaryotes, the genome contains little to no non-coding sequence, such that genes are tightly clustered in groups or operons sequentially along the chromosome. Conversely, the genes in eukaryotes are punctuated by long stretches of non-coding sequence.