Chemical Feedstock Recovery Through Plastic Pyrolysis: Challenges and Perspectives Toward a Circular Economy

  • 1Tohoku Daigaku, Graduate School of Engineering, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, 980-8579, Sendai, JAPAN.
  • 2Tohoku University: Tohoku Daigaku, Graduate School of Environmental Studies, JAPAN.
  • 3DOWA ECO-SYSTEM CO. LTD., Environmental Solution Department, JAPAN.

|

Abstract

Plastics are indispensable in daily life, with both production and waste generation increasing annually. As the world strives for net-zero emissions, advancing plastic recycling technologies has become a global priority. Pyrolytic liquefaction is a promising approach for recovering chemical feedstocks, including fuel fractions, from waste plastics, potentially substituting petroleum resources. Since the 1970s, research on pyrolytic liquefaction has progressed globally, and several industrial-scale plants are now in operation. However, to accelerate the transition to a circular economy, it is crucial to bridge the knowledge gap between lab-scale research and industrial-scale implementation of pyrolysis-liquefaction technologies. This review provides a comprehensive analysis of the current state of plastic recycling, the progress and challenges in cutting-edge lab-scale research on pyrolytic liquefaction, alongside the latest trends in industrial-scale liquefaction projects. It reveals that pyrolytic liquefaction of a wide range of plastics-including halogenated plastics and poly(ethylene terephthalate)-has been extensively studied at the laboratory level. In contrast, industrial-scale operations often focus on more common, easily pyrolyzed plastics and generally avoid the use of catalysts. This highlights the urgent need to develop robust, reusable, and cost-effective catalysts, as well as optimized process designs, to expand the range of plastic feedstocks suitable for industrial-scale pyrolysis plants.

Related Concept Videos

Types of Step-Growth Polymers: Polyesters 01:20

2.2K

The introduction of polyesters has brought major development to the textile industry. The wrinkle-free behavior of polyester blends has eliminated the need for starching and ironing clothes.
Polyesters are commonly prepared from terephthalic acid and ethylene glycol; the crude product is known as poly(ethylene terephthalate) or PET. However, polyesters are synthesized industrially by transesterification of dimethyl terephthalate with ethylene glycol at 150 °C. The two reactants and the...

Bioremediation 00:46

18.1K

Bioremediation is the use of prokaryotes, fungi, or plants to remove pollutants from the environment. This process has been used to remove harmful toxins in groundwater as a byproduct of agricultural run-off and also to clean up oil spills.

Agricultural Bioremediation

Bioremediation is a useful process in which microbes and bacteria are used to remove toxins and pollutants from the environment. In agricultural practices, the use of fertilizers and pesticides can result in leaching of...

Free-Radical Chain Reaction and Polymerization of Alkenes 02:35

7.6K

The conversion of alkenes to macromolecules called polymers is a reaction of high commercial importance. The structure of the polymer is defined by a repeating unit, while the terminal groups are considered insignificant. The average degree of polymerization represents the number of repeating units in the polymer molecule and is denoted by the subscript n.

Alkenes undergo polymerization via a free-radical mechanism involving three steps: initiation, propagation, and...