Evaluation of climate change mitigation strategies for Irish forests using the CBM-CFS3 model

  • 1FERS Ltd, Kilberry, Navan, Co Meath, Ireland. kevin.black@fers.ie.
  • 2Forest Service, Department of Agriculture, Food and the Marine, Dublin, Ireland.
  • 3Joint Research Centre, European Commission, Ispra, Italy.
  • 4, Padova, Italy.

Abstract

BACKGROUND

The Irish Forestry greenhouse gas (GHG) profile is undergoing a transition from a net sink to net emission because of persisting emissions from organic soils, an increase in harvest and shifts in the age class structure of plantation forests. The forestry GHG trend diverges from the required National and European Union (EU) policy pathway for land use land use change and forestry (LULUCF) and agriculture aimed at halving emissions by 2030 and achieving carbon neutrality by 2050. A recalibrated version of the Carbon Budget Model of the Canadian Forest Service (CBM-CFS3) was used to assess the impact of identified national forest policy measures on the forest GHG profile over the short to long term.

RESULTS

An analysis of projected scenarios revealed that, under current silvicultural practices and afforestation policies (with existing measures-WEMs), Irish forests will continue to be a long-term emission beyond 2070 unless harvest rates and management practices are adjusted to negate the adverse impact of emissions from organic soils and fluctuations in historic afforestation rates. The implementation of additional measures (WAM) suggests that the forest sink can be sustained if harvest rates exceed 75% of the net annual increment (NAI), additional afforestation targets are met and if plantation rotation age is increased. Although additional afforestation and a reduction in deforestation is required to meet long-term carbon-neutral goals, the implementation of these policies has a minimal short-term impact on the 2030 targets set out under the National Climate Change Plan (CAP 24) and the revised EU LULUCF regulation (841/2023).

CONCLUSION

The results show that the extension of rotation age and associated reductions in harvest levels will have the greatest short-term impact on climate change mitigation, which can be delivered at a negative marginal abatement cost. However, even if WAM forest measures are implemented, Ireland is unlikely to meet the National and EU LULUCF targets by 2030 because of a decreasing forest sink.

Related Concept Videos

Adaptations that Reduce Water Loss 01:57

25.0K

Though evaporation from plant leaves drives transpiration, it also results in loss of water. Because water is critical for photosynthetic reactions and other cellular processes, evolutionary pressures on plants in different environments have driven the acquisition of adaptations that reduce water loss.

In land plants, the uppermost cell layer of a plant leaf, called the epidermis, is coated with a waxy substance called the cuticle. This hydrophobic layer is composed of the polymer cutin and...

What is Climate? 01:16

18.1K

Climate refers to the prevailing weather conditions in a specific area over an extended period. As the saying goes, “Climate is what you expect. Weather is what you get.” Climate is influenced by geographic factors, such as latitude, terrain, and proximity to bodies of water.

Weather and Climate

Weather and climate are related, though they differ in terms of time scale and predictability. Weather refers to the state of the atmosphere at a specific time and place, whereas climate...

Global Climate Change 01:50

24.0K

Throughout its ~4.5 billion year history, the Earth has experienced periods of warming and cooling. However, the current drastic increase in global temperatures is well outside of the Earth’s cyclic norms, and evidence for human-caused global climate change is compelling. Paleoclimatology, the study of ancient climate conditions, provides ample evidence for human-caused global climate change by comparing recent conditions with those in the past.

Past Periods of Warming and Cooling

In...

The Carbon Cycle 01:14

36.8K

Carbon is the basis of all organic matter on Earth, and is recycled through the ecosystem in two primary processes: one in which carbon is exchanged among living organisms, and one in which carbon is cycled over long periods of time through fossilized organic remains, weathering of rocks, and volcanic activity. Human activities, including increased agricultural practices and the burning of fossil fuels, has greatly affected the balance of the natural carbon cycle.

Biological Carbon Cycle

All...

The Calvin Benson Cycle 01:46

4.4K

Ribulose 1,5- bisphosphate carboxylase/oxygenase (RuBisCo) is a critical enzyme that catalyzes carbon dioxide assimilation during photosynthesis. However, it is an inefficient enzyme, having an extremely slow catalytic rate. A typical enzyme can process about a thousand molecules per second; however, RuBisCo fixes only around three-carbon dioxides per second. Photosynthetic cells compensate for this slow rate by synthesizing very high amounts of RuBisCo, making it the most abundant single...