Progress and future directions of biogeographical comparisons of plant-fungal interactions in invasion contexts

  • 1Institute Biology, Department of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108, Halle, Germany.
  • 2MPG Ranch, Missoula, MT, 59801, USA.
  • 3Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, 59812, USA.
  • 4Plant Evolutionary Ecology, Institute of Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
  • 5College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
  • 6German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.

|

Abstract

Plant invasions are biogeographical phenomena that may involve shifts in belowground plant-fungal interactions, such as the release from fungal pathogens or more beneficial interactions with mutualists in nonnative ranges. However, native and nonnative ranges are not uniform but environmentally heterogeneous, and plant-fungal interactions are strongly shaped by spatio-environmental context. Intense discussion at the 45th New Phytologist Symposium revealed that we lack information on how well spatio-environmental variation within ranges has been considered in samplings and analyses of studies comparing plant-fungal interactions between ranges. Through a systematic review, we assessed the sampling quality of recent biogeographical studies. We found that the majority relied on a limited population sampling within each range, often covering only a small fraction of the species' spatial distribution and macroclimatic niche. Additionally, low similarity between the sampled climatic gradients in the native and nonnative ranges might have introduced false-positive differences across ranges. These sampling deficiencies may undermine the robustness and representativeness of range comparisons, thereby restricting our ability to accurately assess the role of plant-fungal interactions in invasion success. We recommend that future research incorporate broader and more comparable spatio-environmental variation in both ranges, and we provide practical guidelines for improving sampling designs.

Related Concept Videos

The Roles of Bacteria and Fungi in Plant Nutrition 02:11

34.9K

Plants have the impressive ability to create their own food through photosynthesis. However, plants often require assistance from organisms in the soil to acquire the nutrients they need to function correctly. Both bacteria and fungi have evolved symbiotic relationships with plants that help the species to thrive in a wide variety of environments.

The collective bacteria residing in and around plant roots are termed the rhizosphere. These soil-dwelling bacterial species are incredibly diverse....

Evolutionary Relationships through Genome Comparisons 02:54

5.7K

Genome comparison is one of the excellent ways to interpret the evolutionary relationships between organisms. The basic principle of genome comparison is that if two species share a common feature, it is likely encoded by the DNA sequence conserved between both species. The advent of genome sequencing technologies in the late 20th century enabled scientists to understand the concept of conservation of domains between species and helped them to deduce evolutionary relationships across diverse...

Introduction to Plant Diversity 02:22

43.5K

From Water to Land

Kingdom Plantae first appeared about 410 million years ago as green algae transitioned from water to land. This land was a relatively uncolonized environment with ample resources. Terrestrial environments also offered more light and carbon dioxide, required by plants to grow and survive.

However, the stark differences between land and sea posed a formidable challenge to early colonizing species prompting many new adaptations that have resulted in the wide variety of plant...

Seedless Vascular Plants 03:24

59.2K

Seedless Vascular Plants Were the First Tall Plants on Earth

Today, seedless vascular plants are represented by monilophytes and lycophytes. Ferns—the most common seedless vascular plants—are monilophytes. Whisk ferns (and their relatives) and horsetails are also monilophytes. Lycophytes include club mosses, spikemosses, and quillworts—none of which are true mosses.

Unlike nonvascular plants, vascular plants—including seedless vascular plants—have an extensive...

Predator-Prey Interactions 02:39

16.0K

Predators consume prey for energy. Predators that acquire prey and prey that avoid predation both increase their chances of survival and reproduction (i.e., fitness). Routine predator-prey interactions elicit mutual adaptations that improve predator offenses, such as claws, teeth, and speed, as well as prey defenses, including crypsis, aposematism, and mimicry. Thus, predator-prey interactions resemble an evolutionary arms race.

Although predation is commonly associated with carnivory, for...