The molecular basis of music-induced neuroplasticity in humans: A systematic review

  • 0Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden. Electronic address: kirthana.rguhs@gmail.com.
Neuroscience and biobehavioral reviews +

|

Abstract

Neuroscientific research on music-based activities has grown rapidly, shedding light on the health benefits of music across various domains. However, the molecular mechanisms by which music influences neuroplasticity in humans remain largely unexplored. This review aimed to synthesize and critically appraise existing research on molecular neuroplasticity in humans, with a specific focus on the effects of receptive and active music-based interventions (MBIs) and musical training. Following the PRISMA guidelines, a systematic search was conducted across four databases (MEDLINE, Embase, PsycINFO, and Scopus), for articles published between 2000 and December 2023. From an initial return of 3239 records, 15 studies met the inclusion criteria and were synthesized into three categories of music experiences: (1) receptive MBIs, (2) active MBIs, and (3) musical training. Both active and receptive MBIs were found to enhance neuroplasticity. Specifically, music listening was associated with relaxation and improved immune function, marked by the upregulation of genes related to neuroprotection and synaptic plasticity, while active MBIs consistently enhanced peripheral neurotrophic factors in both healthy and patient populations. Among musicians, neurogenetic alterations linked to music perception and production, neurogenesis, and neurotransmission were identified, with multiple studies highlighting the roles of Brain-Derived Neurotrophic Factor (BDNF), Alpha Synuclein (SNCA), and GATA2 (GATA Binding Protein 2) genes. Collectively, both MBIs and musical training induce neuroplastic changes by modulating neurogenetics, enhancing neurotrophins, altering hormonal levels, and reducing stress in humans. These findings highlight the need for further research to elucidate the molecular mechanisms underlying music's effects on the human brain, which could have implications for advancing therapeutic interventions for neuropsychological disorders.

Related Concept Videos

Neuroplasticity 01:01

315

Neuroplasticity reflects the brain's remarkable capacity to adapt and evolve, responding dynamically to learning, experiences, or injury by reorganizing its neural circuitry. This reorganization involves creating new neural connections and refining old ones through a series of biological processes that contribute to the brain's lifelong development and adaptability.

• The brain's ability to change begins with the growth of dendrites and axons, which effectively increases the...

Long-term Potentiation 01:35

55.0K

Long-term potentiation, or LTP, is one of the ways by which synaptic plasticity—changes in the strength of chemical synapses—can occur in the brain. LTP is the process of synaptic strengthening that occurs over time between pre- and postsynaptic neuronal connections. The synaptic strengthening of LTP works in opposition to the synaptic weakening of long-term depression (LTD) and together are the main mechanisms that underlie learning and memory.

Hebbian LTP

LTP can occur when...

Gene-Environment Interactions 01:20

270

Gene expression is a dynamic process that is significantly influenced by environmental factors. This interaction underlies the complex nature of biological development and the phenotypic differences observed among individuals, even among those with identical genetic makeups. Factors such as radiation, temperature, behavior, nutrition, and stress play pivotal roles in determining how genes are expressed. The concept of the reaction range is central to understanding this interaction. It posits...

Perceiving Loudness, Pitch, and Location 01:21

203

The human brain perceives pitch through two primary mechanisms reflected in place theory and frequency theory. Each mechanism describes how sound waves are interpreted as specific pitches by the brain, offering insights into the intricate processes of auditory perception.
Place theory, or place coding, suggests that different pitches are heard because various sound waves activate specific locations along the cochlea's basilar membrane. The brain determines the pitch of a sound by...