A Comparative Study of Conventional and Tripolar EEG for High-Performance Reach-to-Grasp BCI Systems

Abstract

This study aims to enhance brain-computer interface (BCI) applications for individuals with motor impairments by comparing the effectiveness of noninvasive tripolar concentric ring electrode electroencephalography (tEEG) with conventional electroencephalography (EEG) technology. The goal is to determine which EEG technology is more effective in measuring and decoding different grasp-related neural signals. The approach involves experimenting on ten healthy participants who performed two distinct reach-and-grasp movements: power grasp and precision grasp, with a no-movement condition serving as the baseline. Our research compares EEG and tEEG in decoding grasping movements, focusing on signal-to-noise ratio (SNR), spatial resolution, and wavelet time-frequency analysis. Additionally, our study involved extracting and analyzing statistical features from the wavelet coefficients, and both binary and multiclass classification methods were employed. Four machine learning algorithms-Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), and Linear Discriminant Analysis (LDA)-were used to evaluate the decoding accuracies. Our results indicated that tEEG demonstrated higher quality performance compared to conventional EEG in various aspects. This included a higher signal-to-noise ratio and improved spatial resolution. Furthermore, wavelet timefrequency analyses validated these findings, with tEEG exhibiting increased power spectra, thus providing a more detailed and informative representation of neural dynamics. The use of tEEG led to significant improvements in decoding accuracy for differentiating grasp movement types. Specifically, tEEG achieved around 90.00% accuracy in binary and 75.97% for multiclass classification. These results exceed those from conventional EEG, which recorded a maximum of 77.85% and 61.27% in similar tasks, respectively.

Related Concept Videos