Genomic introgression underlies environmental adaptation in three species of Chinese wingnuts, Pterocarya

  • 1Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
  • 2USDA Forest Service, Sustainable Forest Management Research, 201 14th Street SW, Washington, DC 20250, USA.

|

Abstract

Intraspecific genetic variance and gene flow can support the adaptive evolution of species challenged by climate shifts or novel environmental conditions. Less well understood is how genome organization and gene flow interact in closely related species during evolutionary divergence and differentiation. Here we conducted genomic footprint analyses to determine how three species of Pterocarya (P . stenoptera, P. hupehensis, and P. macroptera), which are sympatric but occupy different elevational niches, adapted to the heterogeneous environment of the Qinling-Daba Mountains, China. We identified candidate genes for environmental adaptation (i.e., PIEZO1, WRKY39, VDAC3, CBL1, and RAF), and also identified regions of gene introgression between P. hupehensis and P. macroptera that show lower genetic load and higher genetic diversity than the rest of their genomes. The same introgressed regions are notably situated in areas of minimal genetic divergence yet they are characterized by elevated recombination rates. We also identified candidate genes within these introgressed regions related to environmental adaptation (TPLC2, CYCH;1, LUH, bHLH112, GLX1, TLP-3, and ABC1). Our findings have thus clarified the important role of gene flow in ecological adaptation and revealed genomic signatures of past introgression. Together, these findings provide a stronger theoretical basis for understanding the ecological adaptation and conservation of Quaternary relict woody plants in East Asia.

Related Concept Videos

Background and Environment Affect Phenotype 02:27

6.5K

Although the genetic makeup of an organism plays a major role in determining the phenotype, there are also several environmental factors, such as temperature, oxygen availability, presence of mutagens, that can alter an organism’s phenotype.
An example of how genetic background affects phenotype can be seen in horses. The Extension gene in horses is responsible for their coat color. A wild-type gene (EE) produces black pigment in the coat, while a mutant gene (ee) produces red pigment. A...

What is Natural Selection? 01:32

114.9K

Natural selection is an evolutionary process in which individuals with survival-promoting traits reproduce at higher rates. These favorable traits become more common within a population or species. Naturally selected traits initially arise via random genetic mutations. In order for selection to occur, there must be variation within a population, the trait controlling the variation must be heritable, and there must be an evolutionary advantage for variation in the trait.

The Theory of Natural...

Exon Recombination 02:32

3.6K

The evolution of new genes is critical for speciation. Exon recombination, also known as exon shuffling or domain shuffling, is an important means of new gene formation. It is observed across vertebrates, invertebrates, and in some plants such as potatoes and sunflowers. During exon recombination, exons from the same or different genes recombine and produce new exon-intron combinations, which might evolve into new genes. 
Exon shuffling follows “splice frame rules.” Each exon...

Genetics of Speciation 02:16

19.1K

Speciation is the evolutionary process resulting in the formation of new, distinct species—groups of reproductively isolated populations.

The genetics of speciation involves the different traits or isolating mechanisms preventing gene exchange, leading to reproductive isolation. Reproductive isolation can be due to reproductive barriers that have effects either before or after the formation of a zygote. Pre-zygotic mechanisms prevent fertilization from occurring, and post-zygotic...

Gene Flow 02:39

34.9K

Gene flow is the transfer of genes among populations, resulting from either the dispersal of gametes or from the migration of individuals.

This phenomenon plays a significant evolutionary role in all organisms, and depending on the rates of gene flow, the mechanism either induces genetic diversity or generates genetic homogeneity among populations. When the rate of gene flow is low, the introduction of new alleles into a population generates genetic diversity. On the other hand, a high rate of...

Convergent Evolution 01:54

27.6K

Evolution shapes the features of organisms over time, ensuring that they are suited for the environments in which they live. Sometimes, selection pressure leads to the rise of similar but unrelated adaptations in organisms with no recent common ancestors, a process known as convergent evolution.

The structures that arise from convergent evolution are called analogous structures. They are similar in function even if they are dissimilar in structure. Further, structures can be analogous while...