How can Medical Physics Foster More Environmentally Sustainable Practices in Medical Imaging?
Related Concept Videos

Positron emission tomography (PET) is a medical imaging technique involving radiopharmaceuticals — substances that emit short-lived radiation. Although the first PET scanner was introduced in 1961, it took 15 more years before radiopharmaceuticals were combined with the technique and revolutionized its potential.
One of the main requirements of a PET scan is a positron-emitting radioisotope, which is produced in a cyclotron and then attached to a substance used by the part of the body...

Magnetic resonance imaging (MRI) is a noninvasive medical imaging technique based on a phenomenon of nuclear physics discovered in the 1930s, in which matter exposed to magnetic fields and radio waves was found to emit radio signals. In 1970, a physician and researcher named Raymond Damadian noticed that malignant (cancerous) tissue gave off different signals than normal body tissue. He applied for a patent for the first MRI scanning device in clinical use by the early 1980s. The early MRI...

Positron Emission Tomography (PET) is a medical imaging technique that provides crucial insights into the body's physiological functions at a molecular level. It is an indispensable resource for diagnosing, staging, and monitoring various illnesses, notably cancer, neurological disorders, and cardiovascular conditions.
Fundamental Principles of PET
Radioactive Tracer: PET involves using biologically active molecules labeled with radioactive isotopes, known as tracers or radiotracers. The...

German physicist Wilhelm Röntgen (1845–1923) was experimenting with electrical current when he discovered that a mysterious and invisible "ray" would pass through his flesh but leave an outline of his bones on a screen coated with a metal compound. In 1895, Röntgen made the first durable record of the internal parts of a living human: an "X-ray" image (as it came to be called) of his wife’s hand. Scientists worldwide quickly began their own experiments with...

Description
Magnetic Resonance Imaging (MRI) and Ventilation Perfusion Scans are two radiological investigations that offer detailed diagnostic images of the body, particularly lung structures.
MRI
MRI uses magnetic fields and radiofrequency signals to distinguish between normal and abnormal tissues. This technology provides a more detailed diagnostic image than CT scans, enabling it to characterize pulmonary nodules, stage bronchogenic carcinoma, and evaluate inflammatory activity in...

Introduction: MRI and CT scans are crucial advancements in medical imaging techniques, playing a vital role in diagnosing conditions related to the gastrointestinal (GI) system. Each scan serves distinct purposes, targets specific areas, and requires unique nursing duties.
Description of the Procedures
Computed Tomography (CT) scan:
Computed Tomography (CT) scans use X-ray technology to generate detailed images of bones, organs, and tissues. During the scan, the patient lies on a moving table...