Chinese Seed Trait Database: a curated resource for diaspore traits in the Chinese flora

  • 0State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
The New phytologist +

|

No abstract available

Related Concept Videos

Dihybrid Crosses 01:18

74.6K

Overview

To determine whether traits are inherited together or separately, Gregor Mendel crossed pea plants that differed in two traits. These parental plants were homozygous for both traits but displayed different phenotypes. The first generation of offspring were all dihybrids, heterozygotes exhibiting the two dominant phenotypes. When self-fertilized, the dihybrids consistently produced progeny with a 9:3:3:1 ratio of four possible phenotype combinations. This ratio suggested that...

Seed Structure and Early Development of the Sporophyte 02:33

27.9K

Seed structures are composed of a protective seed coat surrounding a plant embryo, and a food store for the developing embryo. The embryo contains the precursor tissues for leaves, stem, and roots. The endosperm and cotyledons—seed leaves—act as the food reserves for the growing embryo.

The embryo contains a double set of chromosomes, one set from each parent. Fertilization of the haploid egg by the haploid sperm gives rise to the zygote, which develops into the embryo. 
The...

Trihybrid Crosses 02:27

23.2K

Trihybrid Crosses
Some of Mendel’s crosses examined three pairs of contrasting characteristics. Such a cross is called a trihybrid cross. A trihybrid cross is a combination of three individual monohybrid crosses. For example, plant height (tall vs. short), seed shape (round vs. wrinkled), and seed color (yellow vs. green).
The F1 generation plants of a trihybrid cross are heterozygous for all three traits and produce eight gametes. Upon self-fertilization, these gametes have an equal...

Plant Breeding and Biotechnology 01:59

18.8K

Crop cultivation has a long history in human civilization, with records showing the cultivation of cereal plants beginning at around 8000 BC. This early plant breeding was developed primarily to provide a steady supply of food.

As humans' understanding of genetics advanced, improved crop varieties could be achieved more quickly. Artificial selection could be more directed, and crop varieties enhanced for favorable traits more quickly to produce better, more robust, or more palatable...

Non-vascular Seedless Plants 02:26

64.0K

The diverse plant life on Earth—consisting of nearly 400,000 species—can be divided into three broad categories based on biological characteristics: nonvascular, seedless vascular, and seed plants.

Nonvascular Plants Were the First Plants on Earth

Nonvascular plants that live today include liverworts, mosses, and hornworts—collectively and informally known as bryophytes.

Nonvascular plants are characterized by a lack of extensive vascular tissue, and have no true roots,...

Monohybrid Crosses 01:20

229.8K

Overview

In the 1850s and 1860s, Gregor Mendel investigated inheritance by performing monohybrid crosses in pea plants. He crossed two plants that were true-breeding for different traits. Based on his observations, Mendel proposed that organisms inherit two copies of each trait, one from each parent, and that dominant traits can hide recessive traits. These results formed the basis of two fundamental principles in genetics: the Principle of Uniformity and the Law of Segregation.

Monohybrid...