Phylogenetic context of antibiotic resistance provides insights into the dynamics of resistance emergence and spread

Abstract

Background

To ameliorate the antibiotic resistance crisis, the drivers of resistance emergence (i.e., de novo evolution) and resistance spread (i.e., cross-transmission) must be better understood.

Methods

Whole-genome sequencing and susceptibility testing were performed on clinical carbapenem-resistant Klebsiella pneumoniae isolates collected from August 2014 to July 2015 across 12 hospitals. Ancestral state reconstruction partitioned patients with resistant strains into those that likely acquired resistance via de novo evolution or cross-transmission. Logistic regression was used to evaluate the associations between patient characteristics/exposures and these two pathways: resistance due to predicted within-host emergence of resistance, and resistance due to predicted cross-transmission. This framework is available in the user-friendly R package, phyloAMR ( https://github.com/kylegontjes/phyloAMR ).

Results

Phylogenetic analysis of 386 epidemic lineage carbapenem-resistant Klebsiella pneumoniae sequence type 258 isolates revealed differences in the relative contribution of de novo evolution and cross-transmission to the burden of resistance to five antibiotics. Clade-specific variations in rates of resistance emergence and their frequency and magnitude of spread were detected for each antibiotic. Phylogenetically-informed regression modeling identified distinct clinical risk factors associated with each pathway. Exposure to the cognate antibiotic was an independent risk factor for resistance emergence (trimethoprim-sulfamethoxazole, colistin, and beta-lactam/beta-lactamase inhibitors) and resistance spread (trimethoprim-sulfamethoxazole, amikacin, and colistin). In addition to antibiotic exposures, comorbidities (e.g., stage IV+ decubitus ulcers) and indwelling devices (e.g., gastrostomy tubes) were detected as unique risk factors for resistance spread.

Conclusions

Phylogenetic contextualization generated insights and hypotheses into how bacterial genetic background, patient characteristics, and clinical practices influence the emergence and spread of antibiotic resistance.

Related Concept Videos

Antibiotic Selection 00:57

52.4K

Overview

Researchers use antibiotic resistance genes to identify bacteria that possess a plasmid containing their gene of interest. Antibiotic resistance naturally occurs when a spontaneous DNA mutation creates changes in bacterial genes that eliminate antibiotic activity. Bacteria can share these new resistance genes with their offspring and other bacteria. The overuse and misuse of antibiotics have created a public health crisis, as resistant and multi-resistant bacteria continue to develop.

Genomic DNA in Prokaryotes 00:46

43.5K

The genome of most prokaryotic organisms consists of double-stranded DNA organized into one circular chromosome in a region of cytoplasm called the nucleoid. The chromosome is tightly wound, or supercoiled, for efficient storage. Prokaryotes also contain other circular pieces of DNA called plasmids. These plasmids are smaller than the chromosome and often carry genes that confer adaptive functions, such as antibiotic resistance.
Genomic Diversity in Bacteria
Although bacterial genomes are much...

Defense Against Bacterial Pathogens 01:31

1.4K

The human immune system is a complex network of cells, tissues, and organs that work together to defend the body against bacterial infections. It consists of various immune cells, each playing a specific role in the defense mechanism.
Phagocytes
Phagocytes are the frontline soldiers of the immune system. They include neutrophils and macrophages. Neutrophils are the most abundant type of white blood cell and are quickly mobilized to the site of infection. Macrophages are larger cells that patrol...

Genome Size and the Evolution of New Genes 03:21

7.9K

While every living organism has a genome of some kind (be it RNA, or DNA), there is considerable variation in the sizes of these blueprints. One major factor that impacts genome size is whether the organism is prokaryotic or eukaryotic. In prokaryotes, the genome contains little to no non-coding sequence, such that genes are tightly clustered in groups or operons sequentially along the chromosome. Conversely, the genes in eukaryotes are punctuated by long stretches of non-coding sequence.

Combined Effects of Drugs: Synergism 01:27

3.8K

Synergism is a useful mechanism where combining two or more drugs is more effective than each constituent used alone. Such combinations are also called supra-additive interactions. The drugs collectively enhance the final therapeutic effect by acting on different targets. Another advantage is that the low dose of each constituent drug is sufficient to achieve the desired effect. This helps reduce the duration of therapy and lower the adverse effects of these drugs.
Such synergistic combinations...

Antimicrobial Proteins 01:23

947

Antimicrobial proteins are important components of the immune system. They aid the body in combating pathogens by either killing them directly or hindering their replication processes. Four main types of antimicrobial substances are interferons, the complement system, iron-binding proteins, and antimicrobial proteins.
Interferons
Interferons (IFNs) are proteins produced by lymphocytes, macrophages, and fibroblasts infected with viruses. While IFNs cannot prevent viruses from entering and...