Unsaturated Macrolactones from Renewable Feedstocks: Synthesis, Ring-Opening Polymerization and Application Prospects

  • 0A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia.
International journal of molecular sciences +

|

Abstract

Unsaturated macrolactones (UMs) have long attracted researchers' attention due to a combination of a reactive ester fragment and C=C bond in their structures. UMs of natural origin are comparatively few in number, and the task of developing synthetic approaches to new UMs is relevant. Recent advances in the synthesis of UMs cannot be dissociated from the progress in design of metathesis catalysts, since this catalytic approach is an atom-economy alternative to conventional organochemical methods. In the present review, we summarized and discussed the use of ring-closing metathesis, catalyzed by Ru and Group 6 metal complexes, in the synthesis of Ums and the advantages and shortcomings of the catalytic approach to UMs in comparison with organochemical methods. In a separate section, the use of UMs in the synthesis of unsaturated polyesters, the functionalization of these (co)polymers, and the prospects for practical use of the material obtained are also presented. It is essential that the actual approaches to UMs are often based on the use of renewable feedstocks, thereby meeting Green Chemistry principles.

Related Concept Videos

Olefin Metathesis Polymerization: Ring-Opening Metathesis Polymerization (ROMP) 01:16

2.5K

Ring-opening metathesis polymerization or ROMP involves strained cycloalkenes as starting materials. The mechanism of ROMP proceeds by reacting cycloalkene with Grubbs catalyst to give metallacyclobutane intermediate which undergoes a ring-opening reaction to form new carbene. The new carbene reacts with another molecule of cycloalkene. Repetition of these steps leads to the formation of an unsaturated open-chain polymer product. All these steps are reversible, however, relieving the ring...

Olefin Metathesis Polymerization: Overview 01:13

2.1K

Recently, the development of olefin metathesis polymerization advanced the field of polymer synthesis. Simply put, the reorganization of substituents on their double bonds between two olefins in the presence of a catalyst is known as the olefin metathesis reaction. The use of metathesis reaction for polymer synthesis is called olefin metathesis polymerization.
Ruthenium-based Grubbs catalyst is the most commonly used catalyst for olefin metathesis polymerization. Grubbs catalyst consists...

Olefin Metathesis Polymerization: Acyclic Diene Metathesis (ADMET) 00:53

1.9K

Acyclic diene metathesis polymerization or ADMET polymerization involves cross-metathesis of terminal dienes, such as 1,8-nonadiene, to give linear unsaturated polymer and ethylene. As ADMET is a reversible process, the formed ethylene gas must be removed from the reaction mixture to complete the polymerization process.
Similar to cross-metathesis, ADMET also involves the formation of metallacyclobutane intermediate by [2+2] cycloaddition of one of the double bonds of a terminal diene with...

Alkylation of β-Diester Enolates: Malonic Ester Synthesis 01:14

3.4K

Malonic ester synthesis is a method to obtain α substituted carboxylic acids from ꞵ-diesters such as diethyl malonate and alkyl halides.

The reaction proceeds via abstraction of the acidic α hydrogen from a ꞵ-diester to produce a doubly stabilized enolate ion. The nucleophilic enolate attacks the alkyl halide in an SN2 manner to form an alkylated malonic ester intermediate with a new C–C bond. Further treating the intermediate with aqueous acid or base results in...

ATP and Macromolecule Synthesis 01:28

5.4K

Biological macromolecules are organic compounds, predominantly composed of carbon atoms. The carbon atoms are covalently bonded with hydrogen, oxygen, nitrogen, and other minor elements. There are four major biological macromolecule classes: carbohydrates, lipids, proteins, and nucleic acids.
Most macromolecules are composed of single subunits, or building blocks, called monomers. The monomers combine with each other using covalent bonds to form larger molecules known as polymers.
Conversion of...

Ziegler–Natta Chain-Growth Polymerization: Overview 01:17

3.2K

Ziegler–Natta polymerization is another form of addition or chain‐growth polymerization used for synthesizing linear polymers over branched polymers. The catalyst used for polymerization is the Ziegler–Natta catalyst, named after Karl Ziegler and Giulio Natta, who developed it in 1953. This catalyst is an organometallic complex of titanium tetrachloride and triethyl aluminum, with the active form of the catalyst being an alkyl titanium compound. Using the Ziegler–Natta...