Abstract
To investigate the microscopic mechanism of aging-induced "dewetting" at the matrix/filler interface in Nitrate Ester Plasticized Polyether (NEPE) propellant, this study decoupled the aging process into two factors: crosslinking density evolution and nitrate ester decomposition. Molecular dynamics (MD) simulations were employed to construct all-component matrix models and matrix/filler interface models with varying aging extents. Key parameters including crosslinking density, mechanical properties, free volume fraction, diffusion coefficients of the matrix, as well as interfacial binding energy and radial distribution function (RDF) were calculated to analyze the effects of both aging factors on "debonding". The results indicate the following: 1. Increased crosslinking density enhances matrix rigidity, suppresses molecular mobility, and causes interfacial binding energy to initially rise then decline, peaking at 40% crosslinking degree. 2. Progressive nitrate ester decomposition expands free volume within the matrix, improves binder system mobility, and weakens nitrate ester-induced interfacial damage, thereby strengthening hydrogen bonding and van der Waals interactions at the interface. 3. The addition of a small amount of bonding agent improved the interfacial bonding energy but did not change the trend of the bonding energy with aging.