An old dog with new tricks - the value of photorespiration as a central metabolic hub with implications for environmental acclimation

  • 0University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock, Germany.
Plant physiology +

|

Abstract

Photorespiration serves as a metabolic repair system that safeguards photosynthetic carbon fixation in photoautotrophic organisms thriving in today's oxygen-rich atmosphere. This essential process detoxifies the inhibitory metabolite 2-phosphoglycolate (2PG), an unavoidable byproduct of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) activity in the light. If not efficiently metabolized, 2PG impairs key enzymatic processes involved in carbon assimilation and utilization thereby inhibiting growth in oxygenic phototrophs. Decades of research have unraveled the biochemical and genetic intricacies of photorespiration, establishing it as the second-highest carbon flux in illuminated leaves. Here, we discuss recent developments that have expanded our understanding of the pathway, revealing novel metabolic players, intricate inter-organelle interactions, and new regulatory networks. Isotope labeling studies and reverse genetics have identified further interactions of the classical photorespiratory cycle with central carbon and nitrogen metabolism. In order to enhance photosynthetic efficiency, synthetic biology approaches have reengineered photorespiration, either by integrating bypass pathways or optimizing native enzymes. These interventions highlight the vast potential of optimized photorespiration to boost photosynthetic yield and enhance plant adaptation to future climates. Very recently, the importance of active photorespiration in guard cells was discovered, linking it to the regulation of stomatal metabolism and behavior. Collectively, these recent findings reinforce the immense promise of continued photorespiratory research in developing innovative strategies for improving plant yield and resilience.

Related Concept Videos

The Calvin Benson Cycle 01:46

4.5K

Ribulose 1,5- bisphosphate carboxylase/oxygenase (RuBisCo) is a critical enzyme that catalyzes carbon dioxide assimilation during photosynthesis. However, it is an inefficient enzyme, having an extremely slow catalytic rate. A typical enzyme can process about a thousand molecules per second; however, RuBisCo fixes only around three-carbon dioxides per second. Photosynthetic cells compensate for this slow rate by synthesizing very high amounts of RuBisCo, making it the most abundant single...

The Calvin Cycle 01:40

73.7K

Overview

Oxygenic photosynthesis converts approximately 200 billion tons of carbon dioxide (CO2) annually to organic compounds and produces approximately 140 billion tons of atmospheric oxygen (O2). Photosynthesis is the basis of all human food and oxygen needs.

The photosynthetic process can be divided into two sets of reactions that take place in different regions of plant chloroplasts: the light-dependent reaction and the light-independent or “dark” reactions. The...

What is Photosynthesis? 00:39

98.8K

Photosynthesis is a multipart, biochemical process that occurs in plants as well as in some bacteria. It captures carbon dioxide and solar energy to produce glucose. Glucose stores chemical energy in the form of carbohydrates. The overall biochemical formula of photosynthesis is 6 CO2 + 6 H2O + Light energy → C6H12O6 + 6 O2. Photosynthesis releases oxygen into the atmosphere and is largely responsible for maintaining the Earth’s atmospheric oxygen content.

Photosynthetic reactions...

Chemical Factors Affecting Respiration Centers 01:31

1.0K

Chemical factors such as changing CO2, O2, and H+ levels in arterial blood play a critical role in influencing respiration depth and rates. These variations are detected by chemoreceptors—specialized sensors located in two primary body areas. Central chemoreceptors are found throughout the brain stem, including the ventrolateral medulla, while peripheral chemoreceptors are located in the aortic arch and carotid arteries.
CO2 has a potent influence on respiration and is strictly regulated....

C4 Pathway and CAM 01:27

45.4K

Most plants use the C3 pathway for carbon fixation. However, some plants, such as sugar cane, corn, and cacti that grow in hot conditions, use alternative pathways to fix carbon and conserve energy loss due to photorespiration. Photorespiration is the process that occurs when the oxygen concentration is high. Under such conditions, the rubisco enzyme in the Calvin cycle binds O2 instead of CO2, which halts photosynthesis and consumes energy.
C4 Pathway
The C4 pathway is used by plants such as...

The Z-Scheme of Electron Transport in Photosynthesis 01:34

10.0K

The light reactions of photosynthesis assume a linear flow of electrons from water to NADP+. During this process, light energy drives the splitting of water molecules to produce oxygen. However, oxidation of water molecules is a thermodynamically unfavorable reaction and requires a strong oxidizing agent. This is accomplished by the first product of light reactions: oxidized P680 (or P680+), the most powerful oxidizing agent known in biology. The oxidized P680 that acquires an electron from the...