Catalyst- and Base-Free Synthesis of Pyridine-Fused Uracils from 6-Methyluracils, Aldehydes, and Ammonium Iodide via a One-Pot Multicomponent Reaction

  • 0School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, People's Republic of China.
Organic letters +

|

Abstract

A novel multicomponent strategy for the efficient formation of pyridine-fused uracils from 6-methyluracils, aldehydes, and ammonium iodide has been developed. This protocol employs ammonium iodide as an environmentally friendly nitrogen source and requires no additional catalysts or bases while providing excellent yields, high atom economy, and broad functional group compatibility.

Related Concept Videos

Nucleophilic Aromatic Substitution: Elimination–Addition 01:11

4.0K

Simple aryl halides do not react with nucleophiles. However, nucleophilic aromatic substitutions can be forced under certain conditions, such as high temperatures or strong bases. The mechanism of substitution under such conditions involves the highly unstable and reactive benzyne intermediate. Benzyne contains equivalent carbon centers at both ends of the triple bond, each of which is equally susceptible to nucleophilic attack. This 50–50 distribution of products is...

Olefin Metathesis Polymerization: Overview 01:13

2.1K

Recently, the development of olefin metathesis polymerization advanced the field of polymer synthesis. Simply put, the reorganization of substituents on their double bonds between two olefins in the presence of a catalyst is known as the olefin metathesis reaction. The use of metathesis reaction for polymer synthesis is called olefin metathesis polymerization.
Ruthenium-based Grubbs catalyst is the most commonly used catalyst for olefin metathesis polymerization. Grubbs catalyst consists...

Acidity of 1-Alkynes 02:42

9.6K


The acidic strength of hydrocarbons follows the order: Alkynes > Alkenes > Alkanes. The strength of an acid is commonly expressed in units of pKa — the lower the pKa, the stronger the acid. Among the hydrocarbons, terminal alkynes have lower pKa values and are, therefore, more acidic. For example, the pKa values for ethane, ethene, and acetylene are 51, 44, and 25, respectively, as shown here.




Ethane
(pKa = 51)


Ethene
(pKa = 44)


Alkenes via Reductive Coupling of Aldehydes or Ketones: McMurry Reaction 01:22

1.9K

The radical dimerization of ketones or aldehydes gives vicinal diols through a pinacol coupling reaction. However, the behavior of titanium metals used for the reaction as a source of electrons is unusual. When the reaction is carried out in the presence of titanium, diols can be isolated at low temperatures. Else titanium further reacts with diols, forming alkenes through the McMurry reaction.

The reaction is a two-step process. The mechanism is still under study, but for some reagent...

Preparation of Alkynes: Alkylation Reaction 02:27

10.0K

Introduction
Alkylation of terminal alkynes with primary alkyl halides in the presence of a strong base like sodium amide is one of the common methods for the synthesis of longer carbon-chain alkynes. For example, treatment of 1-propyne with sodium amide followed by reaction with ethyl bromide yields 2-pentyne.

The reaction takes place in two steps:
1. The first step is the deprotonation of the terminal alkyne by the strong base forming an acetylide ion.

2. The second step is a nucleophilic...

Reduction of Alkynes to <em data-lazy-src=

7.7K

Introduction
Like alkenes, alkynes can be reduced to alkanes in the presence of transition metal catalysts such as Pt, Pd, or Ni. The reaction involves two sequential syn additions of hydrogen via a cis-alkene intermediate.

Thermodynamic Stability
Catalytic hydrogenation reactions help evaluate the relative thermodynamic stability of hydrocarbons. For example, the heat of hydrogenation of acetylene is −176 kJ/mol, and that of ethylene is −137 kJ/mol. The higher exothermicity...