Unveiling the complexity of nonobstructive hypertrophic cardiomyopathy

  • 1Department of Advanced Biomedical Sciences, University Federico II, Via S Pansini 5, I-80131, Naples, Italy.
  • 2Department of Advanced Biomedical Sciences, University Federico II, Via S Pansini 5, I-80131, Naples, Italy. losi@unina.it.

|

Abstract

Hypertrophic cardiomyopathy (HCM) is a genetic heart disorder defined by the presence of a maximal wall thickness of at least 15 mm with two main forms: obstructive (oHCM) and nonobstructive (nHCM). While oHCM is characterized by left ventricular (LV) outflow tract obstruction (LVOTO), nHCM lacks this feature and shows significant variability in its hemodynamic and anatomical traits. In nHCM, LV hypertrophy (LVH) presents diverse morphologies, including apical hypertrophy and reverse septal curvature, the latter potentially causing mid-ventricular obstruction and near-complete LV emptying. Apical hypertrophy is associated with the risk of LV aneurysms, potentially leading to arrhythmias and thromboembolism. These findings challenge the belief that nHCM is a more benign phenotype than oHCM and highlight the necessity for improved diagnostic and therapeutic strategies. Symptoms in nHCM, such as fatigue and dyspnea, are often attributed to diastolic dysfunction, whereas symptoms like angina are attributed to microvascular dysfunction. However, current treatment options remain limited, as traditional heart failure therapies frequently fail to provide substantial benefits. Given its heterogeneity, a more personalized treatment approach is warranted, including optimizing comorbidities, assessing coronary microvascular dysfunction, and considering alternative pharmacologic strategies. Emerging therapies, such as myosin inhibitors mavacamten and aficamten, target sarcomeric hypercontractility and show promise in early trials, but their clinical impact on nHCM is still under investigation. Gene therapies also hold potential, though their applicability to nHCM is limited by the high rate of mutation-negative cases and the potential irreversibility of advanced disease states. This review critically analyzes the pathophysiological mechanisms of nHCM, evaluates current and emerging therapeutic strategies, and provides guidance on contemporary management approaches for this complex and often underrecognized condition.

Related Concept Videos

Pathophysiology of Heart Failure 01:17

1.5K

Heart failure (HF) is a progressive syndrome involving ventricles that leads to inadequate cardiac output. It can be classified based on location and output or ejection fraction. Ejection fraction (EF) is an essential measurement in the diagnosis and surveillance of HF. Reduced EF corresponds to systolic heart failure (HFrEF). However, HF with preserved ejection fraction (HFpEF) is becoming increasingly prevalent. Also known as diastolic HF, this form of HF is related to aging. The...

Structure of Cardiac Muscles 01:13

8.9K

Cardiac muscle, or myocardium, is a specialized type of muscle found exclusively in the heart. Its unique structural and functional characteristics enable the heart to perform its vital role of pumping blood throughout the body continuously and rhythmically. The cardiac muscle cells, or cardiomyocytes, possess an endomysium and perimysium but do not have an epimysium.
Compared to skeletal muscles, cardiac muscle cells are small and mostly have a single nucleus. Additionally, they are usually...

Imbalances in Cardiac Output 01:26

1.4K

The heart's primary function is to pump blood throughout the body, maintaining a balance between blood sent out (cardiac output) and blood returning (venous return). If this balance is disrupted, it can result in congestive heart failure (CHF), a severe condition where the heart becomes an inefficient pump, leading to inadequate blood circulation.
CHF can occur due to the failure of either side of the heart. Left-side failure leads to pulmonary congestion—the right side continues to send...

Pathophysiology of Cardiac Performance 01:29

617

Typical heart performance is influenced by heart rate, rhythm, myocardial contraction, and metabolism or blood flow. The cardiac muscle exhibits distinct electrophysiological features, including pacemaker activity and calcium channel control, which play a vital role in the heart's response to various drugs. The autonomic nervous system, comprising the sympathetic and parasympathetic branches, regulates heart rate. Sympathetic activation increases heart rate, while parasympathetic activation...