'Intelligent' proteins

  • 1Molecular and Structural Biophysics Laboratory, Department of Zoology, School of Life Sciences, North-Eastern Hill University, Shillong, 793022, India.
  • 2Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL, 33612, USA. vuversky@usf.edu.
  • 3Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma, 00161, Italy.

Abstract

We present an idea of protein molecules that challenges the traditional view of proteins as simple molecular machines and suggests instead that they exhibit a basic form of "intelligence". The idea stems from suggestions coming from Integrated Information Theory (IIT), network theory, and allostery to explore how proteins process information, adapt to their environment, and even show memory-like behaviors. We define protein intelligence using IIT and focus on how proteins integrate information (in terms of the parameter Φ coming from IIT) and balance their core (stable, ordered regions) and periphery (flexible, disordered regions). This balance allows proteins to remain stable while adapting to changes and operating in a critical state where order and disorder coexist. We summarize recent findings on conformational memory, allosteric regulation, protein intrinsic disorder, liquid-liquid phase separation, and critical transitions, and compare protein behavior to other complex systems like ecosystems and neural networks. While our perspective offers a unified framework to understand proteins, it also raises questions about applying intelligence concepts to molecular systems. We discuss how this understanding could advance protein engineering, drug design, and synthetic biology, while at the same time acknowledging the challenges of creating adaptive, "intelligent" proteins. This concept bridges the gap between mechanistic and systems-level views of proteins and offers a comprehensive understanding of their dynamic and adaptive nature. We have tried to redefine the traditionally metaphorical concept of "intelligence" in biochemistry as a measurable property while simultaneously establishing the material foundation of protein intelligence through the identification of fundamental elements such as memory and learning in molecular systems.

Related Concept Videos

Intrinsically Disordered Proteins 02:18

17.7K

Intrinsically disordered proteins are a group of proteins that do not fold into specific three-dimensional structures. Their structural flexibility allows them to complement ordered proteins to perform functions that are inaccessible to rigid structures. They are more common in eukaryotes than prokaryotes and may either be exclusively intrinsically disordered or hybrid proteins, consisting of a mix of ordered and disordered regions. The absence of a rigid structure in these proteins can be...

Protein-protein Interfaces 02:04

12.5K

Many proteins form complexes to carry out their functions, making protein-protein interactions (PPIs) essential for an organism's survival. Most PPIs are stabilized by numerous weak noncovalent chemical forces. The physical shape of the interfaces determines the way two proteins interact. Many globular proteins have closely-matching shapes on their surfaces, which form a large number of weak bonds. Additionally, many PPIs occur between two helices or between a surface cleft and a...

Protein Networks 02:26

3.9K

An organism can have thousands of different proteins, and these proteins must cooperate to ensure the health of an organism. Proteins bind to other proteins and form complexes to carry out their functions. Many proteins interact with multiple other proteins creating a complex network of protein interactions.
These interactions can be represented through maps depicting protein-protein interaction networks, represented as nodes and edges. Nodes are circles that are representative of a protein,...

Protein Complexes with Interchangeable Parts 01:57

2.5K

Groups of proteins may form a complex where each protein in this complex has a different role in the overall execution of the complex’s function. Often some of the proteins in the complex can be replaced by a closely related variant to give a complex that contains many of the same components yet is functionally distinct.
The SCF ubiquitin ligase is a protein complex of five individual proteins. This complex attaches ubiquitin to other target proteins to mark them for degradation. In order...

Single-pass Transmembrane Proteins 01:25

4.9K

Integral membrane proteins are tightly associated with the cell membrane and play a crucial role in cell communication, signaling, adhesion, and transport of the molecules. Some integral membrane proteins are present only in the membrane monolayer. For example, the enzyme fatty acid amide hydrolase is present in the cytoplasmic side of the membrane monolayer. In contrast, another type of integral membrane protein, also known as a transmembrane protein, spans across the membrane. Transmembrane...

Proteins: From Genes to Degradation 02:11

12.1K

Within a biological system, the DNA encodes the RNA, and the nucleotide sequence in the RNA further defines the amino acid sequence in the protein. This is referred to as “The Central Dogma of Molecular Biology” - a term coined by Francis Crick.  Central dogma is a firm principle in biology that defines the flow of genetic information within any life form. The two fundamental steps in central dogma are - transcription and translation.
Transcription is the synthesis of RNA...