Combining analysis of individual and wastewater whole genome sequencing improves SARS-CoV-2 surveillance

  • 0Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast (QUB), Belfast, Northern Ireland, United Kingdom. Electronic address: e.troendle@qub.ac.uk.
Water research +

|

Abstract

Effective pathogen surveillance is critical for public health decision-making, with both individual and environmental monitoring playing essential roles. While wastewater (WW) and individual whole genome sequencing (WGS) have been used to monitor SARS-CoV-2 dynamics, their complementary potential for enhancing national-level genomic surveillance remains underexplored. This study aimed to evaluate the unique and combined contributions of WW and individual WGS to genomic surveillance. We conducted SARS-CoV-2 WGS on over 4000 WW samples and 23,000 individual samples across Northern Ireland (NI) between 2021 and 2023. SARS-CoV-2 RNA was amplified using the ARTIC nCov-2019 and Mini-XT protocols and sequenced on Illumina MiSeq. Variant compositions in WW data were analysed using Freyja and compared to individual data using time series analysis, correlation assessments, and volatility measurements via numerical derivatives, with mean absolute error (MAE) calculations used to assess concordance. Wastewater treatment plants (WWTPs) were ranked by concordance to individual WGS data. WW and individual WGS complementarity was quantified by mutation classification and overlap analysis. Temporal curve shifting was used to identify lags or leads in variant detection and to infer differences in geospatial spread between WW and individual sequencing data. We confirmed strong concordance between WW and individual variant compositions (mean MAE = 6.2 %). MAE was inversely correlated with sequencing rate (Pearson r=-0.37, p < 0.001) and increased during periods with more circulating variants, highlighting the value of increased sequencing efforts during volatile periods. The population size served by a WWTP was not a reliable indicator of how well its variant composition matched that of the national individual sequencing programme. Both individual and WW-based sequencing (WBS) detected unique, as well as common mutations. Patterns of variant spread within NI were consistent between both programmes (Pearson r = 0.63, p = 0.036), providing complementary insights into variant trends and geospatial spread. We demonstrate that integration of individual and WW WGS data offers more comprehensive SARS-CoV-2 genomic surveillance and improves confidence in predictions of variant composition and spread.

Related Concept Videos

Genomics 02:02

36.2K

Genomics is the science of genomes: it is the study of all the genetic material of an organism. In humans, the genome consists of information carried in 23 pairs of chromosomes in the nucleus, as well as mitochondrial DNA. In genomics, both coding and non-coding DNA is sequenced and analyzed. Genomics allows a better understanding of all living things, their evolution, and their diversity. It has a myriad of uses: for example, to build phylogenetic trees, to improve productivity and...

Next-generation Sequencing 03:00

88.5K

The first human genome sequencing project cost $2.7 billion and was declared complete in 2003, after 15 years of international cooperation and collaboration between several research teams and funding agencies. Today, with the advent of next-generation sequencing technologies, the cost and time of sequencing a human genome have dropped over 100 fold.
Next-Generation Sequencing Methods
Although all next-generation methods use different technologies, they all share a set of standard features....

Evolutionary Relationships through Genome Comparisons 02:54

5.7K

Genome comparison is one of the excellent ways to interpret the evolutionary relationships between organisms. The basic principle of genome comparison is that if two species share a common feature, it is likely encoded by the DNA sequence conserved between both species. The advent of genome sequencing technologies in the late 20th century enabled scientists to understand the concept of conservation of domains between species and helped them to deduce evolutionary relationships across diverse...

RNA-seq 03:21

9.9K

RNA sequencing, or RNA-Seq, is a high-throughput sequencing technology used to study the transcriptome of a cell. Transcriptomics helps to interpret the functional elements of a genome and identify the molecular constituents of an organism. Additionally, it also helps in understanding the development of an organism and the occurrence of diseases. 
Before the discovery of RNA-seq, microarray-based methods and Sanger sequencing were used for transcriptome analysis. However, while...