A neural mechanism for optic flow parsing in macaque visual cortex

Affiliations
  • 1Department of Brain and Cognitive Sciences, Center for Visual Science, University of Rochester, Rochester, NY 14627, USA.
  • 2Department of Brain and Cognitive Sciences, Center for Visual Science, University of Rochester, Rochester, NY 14627, USA. Electronic address: gdeangelis@ur.rochester.edu.

|

Abstract

For the brain to compute object motion in the world during self-motion, it must discount the global patterns of image motion (optic flow) caused by self-motion. Optic flow parsing is a proposed visual mechanism for computing object motion in the world, and studies in both humans and monkeys have demonstrated perceptual biases consistent with the operation of a flow-parsing mechanism. However, the neural basis of flow parsing remains unknown. We demonstrate, at both the individual unit and population levels, that neural activity in macaque middle temporal (MT) area is biased by peripheral optic flow in a manner that can at least partially account for perceptual biases induced by flow parsing. These effects cannot be explained by conventional surround suppression mechanisms or choice-related activity and have substantial neural latency. Together, our findings establish the first neural basis for the computation of scene-relative object motion based on flow parsing.

Related Concept Videos

JoVE Research Video for Vision 01:24

50.8K

Vision is the result of light being detected and transduced into neural signals by the retina of the eye. This information is then further analyzed and interpreted by the brain. First, light enters the front of the eye and is focused by the cornea and lens onto the retina—a thin sheet of neural tissue lining the back of the eye. Because of refraction through the convex lens of the eye, images are projected onto the retina upside-down and reversed.

Light is absorbed by the rod and cone…

JoVE Research Video for Visual System 01:26

225

Light enters the eye through the cornea, a transparent, dome-shaped surface covering the surface of the eyeball that helps to direct and focus incoming light. This light is then channeled toward the pupil, an adjustable opening whose size is controlled by the iris. The iris, a pigmented muscle, regulates the amount of light entering the eye by contracting or dilating the pupil, thereby ensuring optimal light levels for clear vision.
Once through the pupil, the light passes through the lens, a…

JoVE Research Video for Anatomy of the Eyeball 01:20

3.5K

The eye is a spherical, hollow structure composed of three tissue layers. The outer layer — the fibrous tunic, comprises the sclera — a white structure — and the cornea, which is transparent. The sclera encompasses some of the ocular surface, most of which is not visible. However, the 'white of the eye' is distinctively visible in humans compared to other species. The cornea, a clear covering at the front of the eye, enables light penetration. The eye's middle…

JoVE Research Video for Parallel Processing 01:20

54

The brain processes sensory information rapidly due to parallel processing, which involves sending data across multiple neural pathways at the same time. This method allows the brain to manage various sensory qualities, such as shapes, colors, movements, and locations, all concurrently. For instance, when observing a forest landscape, the brain simultaneously processes the movement of leaves, the shapes of trees, the depth between them, and the various shades of green. This enables a quick and…

JoVE Research Video for The Retina 01:32

64.7K

The retina is a layer of nervous tissue at the back of the eye that transduces light into neural signals. This process, called phototransduction, is carried out by rod and cone photoreceptor cells in the back of the retina.

Photoreceptors have outer segments with stacks of membranous disks that contain photopigment molecules—such as rhodopsin in rods. The photopigments absorb light, triggering a cascade of molecular events that results in the cell becoming hyperpolarized (with a more…

JoVE Research Video for Motor and Sensory Areas of the Cortex 01:14

1.5K

The cerebral cortex, the brain's outermost layer, is pivotal in processing complex cognitive tasks, emotions, and various sensory inputs and executing voluntary motor activities. This intricate structure is divided into three primary functional areas: the motor areas, sensory areas, and association areas.
Motor Areas
The motor areas located in the frontal lobe are central to controlling voluntary movements. This region is further subdivided into the primary motor cortex and the premotor…