A novel iPSC model of Bryant-Li-Bhoj neurodevelopmental syndrome demonstrates the role of histone H3.3 in neuronal differentiation and maturation

Abstract

Background

Bryant-Li-Bhoj neurodevelopmental syndrome (BLBS) is neurogenetic disorder caused by variants in H3-3A and H3-3B, the two genes that encode the histone H3.3 protein. Ninety-nine percent of individuals with BLBS show developmental delay/intellectual disability, but the mechanism by which variants in H3.3 result in these phenotypes is not yet understood. As a result, only palliative interventions are available to individuals living with BLBS.

Methods

Here, we investigate how one BLBS-causative variant, H3-3B p.Leu48Arg (L48R), affects neurodevelopment using an induced pluripotent stem cell (iPSC) model differentiated to 2D neural progenitor cells (NPCs), 2D forebrain neurons (FBNs), and 3D dorsal forebrain organoids (DFBOs). We employ a multi-omic approach in the 2D models to quantify the resulting changes in gene expression and chromatin accessibility. We used immunofluorescence (IF) staining to define the identities of cells in the 3D DFBOs.

Results

In the 2D systems, we found dysregulation of both gene expression and chromatin accessibility of genes important for neuronal fate, maturation, and function in H3.3 L48R compared to control. Our work in 3D organoids corroborates these findings, demonstrating altered proportions of radial glia and mature neuronal cells.

Conclusions

These data provide the first mechanistic insights into the pathogenesis of BLBS from a human-derived model of neurodevelopment, which suggest that the L48R increases H3-3B expression, resulting in the hyper-deposition of H3.3 into the nucleosome which underlies changes in gene expression and chromatin accessibility. Functionally, this causes dysregulation of cell adhesion, neurotransmission, and the balance between excitatory and inhibitory signaling. These results are a crucial step towards preclinical development and testing of targeted therapies for this and related disorders.

Related Concept Videos

Chromatin Modification in iPS Cells 01:32

1.6K

Chromatin modification alters gene expression; therefore, scientists can add histone-modifying enzymes, histone variants, and chromatin remodeling complexes to somatic cells to aid reprogramming into pluripotent stem (iPS) cells.
Compact chromatin makes reprogramming difficult. Enzymes, such as histone demethylases and acetyltransferases, are often added during reprogramming to loosen the chromatin, making the DNA more accessible to transcription factors. Molecules that inhibit histone...

EPS and iPS Cells in Disease Research 01:21

2.8K

Embryonic and induced pluripotent stem cells are excellent models for disease research because of their ability to self-renew and differentiate into most cell types. Somatic cells from a patient are isolated and reprogrammed into induced pluripotent stem cells or iPSCs. These iPSCs are later differentiated into the desired cell type, which mirrors the diseased cell of the patient. In this way, disease models have been created for investigating diseases such as Down syndrome, type I diabetes,...

iPS Cell Differentiation 01:22

2.6K

The ability of induced pluripotent stem cells or iPSCs to differentiate into most body cell types has stimulated repair and regenerative medicine research over the past few decades. iPSC-derived blood cells, hepatocytes, beta islet cells, cardiomyocytes, neurons, and other cell types can repair injuries or regenerate damaged tissue in diseases such as diabetes and neurodegenerative disorders.

iPSCs have been successfully used to treat age-related macular degeneration (AMD), a form of...