A solution to the anti-Bredt olefin synthesis problem

Affiliations
  • 1Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.

Published on:

Abstract

The π-bonds in unsaturated organic molecules are typically associated with having well-defined geometries that are conserved across diverse structural contexts. Nonetheless, these geometries can be distorted, leading to heightened reactivity of the π-bond. Although π-bond-containing compounds with bent geometries are well utilized in synthetic chemistry, the corresponding leveraging of π-bond-containing compounds that display twisting or pyramidalization remains underdeveloped. We report a study of perhaps the most notorious class of geometrically distorted molecules that contain π-bonds: anti-Bredt olefins (ABOs). ABOs have been known since 1924, and conventional wisdom maintains that ABOs are difficult or impossible to access. We provide a solution to this long-standing problem. Our study also highlights the strategic manipulation of compounds that display considerable distortion arising from the presence of geometrically constrained π-bonds.

Related Concept Videos

JoVE Research Video for Olefin Metathesis Polymerization: Acyclic Diene Metathesis (ADMET) 00:53

1.7K

Acyclic diene metathesis polymerization or ADMET polymerization involves cross-metathesis of terminal dienes, such as 1,8-nonadiene, to give linear unsaturated polymer and ethylene. As ADMET is a reversible process, the formed ethylene gas must be removed from the reaction mixture to complete the polymerization process.
Similar to cross-metathesis, ADMET also involves the formation of metallacyclobutane intermediate by [2+2] cycloaddition of one of the double bonds of a terminal diene with…

JoVE Research Video for Olefin Metathesis Polymerization: Overview 01:13

1.8K

Recently, the development of olefin metathesis polymerization advanced the field of polymer synthesis. Simply put, the reorganization of substituents on their double bonds between two olefins in the presence of a catalyst is known as the olefin metathesis reaction. The use of metathesis reaction for polymer synthesis is called olefin metathesis polymerization.
Ruthenium-based Grubbs catalyst is the most commonly used catalyst for olefin metathesis polymerization. Grubbs catalyst consists…

JoVE Research Video for Hydroboration-Oxidation of Alkenes 03:08

6.5K

In addition to the oxymercuration–demercuration method, which converts the alkenes to alcohols with Markovnikov orientation, a complementary hydroboration-oxidation method yields the anti-Markovnikov product. The hydroboration reaction, discovered in 1959 by H.C. Brown, involves the addition of a B–H bond of borane to an alkene giving an organoborane intermediate. The oxidation of this intermediate with basic hydrogen peroxide forms an alcohol.

Borane as a reagent is very reactive,…

JoVE Research Video for Radical Substitution: Allylic Bromination 01:27

4.4K

In organic synthesis, the formation of products can be altered by changing the reaction conditions. For example, a dibromo addition product is formed when propene is treated with bromine at room temperature. In contrast, propene undergoes allylic substitution in non-polar solvents at high temperatures to give 3-bromopropene. In order to avoid the addition reaction, the bromine concentration must be kept as low as possible throughout the reaction. This can be achieved using…

JoVE Research Video for Radical Anti-Markovnikov Addition to Alkenes: Overview 01:25

3.1K

The addition of hydrogen bromide to alkenes in the presence of hydroperoxides or peroxides proceeds via an anti-Markovnikov pathway and yields alkyl bromides.

The observed regioselectivity can be explained based on the radical stability and steric effect. From the radical stability perspective, adding hydrogen bromide in the presence of peroxide directs the bromine radical at the less substituted carbon via a more stable tertiary radical intermediate. Similarly, in the steric framework, the…

JoVE Research Video for Diels–Alder Reaction Forming Cyclic Products: Stereochemistry 01:28

3.5K

The Diels–Alder reaction is one of the robust methods for synthesizing unsaturated six-membered rings. The reaction involves a concerted cyclic movement of six π electrons: four π electrons from the diene and two π electrons from the dienophile.

For the electrons to flow seamlessly between the two π systems, specific stereochemical and conformational requirements must be met.
Stereochemical Orbital Symmetry
The frontier molecular orbitals that satisfy the symmetry…