Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure prediction

  • 0Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306, USA. rschurko@fsu.edu.
Faraday discussions +

|

Abstract

Quadrupolar NMR crystallography guided crystal structure prediction (QNMRX-CSP) is a nascent protocol for predicting, solving, and refining crystal structures. QNMRX-CSP employs a combination of solid-state NMR data from quadrupolar nuclides (i.e., nuclear spin >1/2), static lattice energies and electric field gradient (EFG) tensors from dispersion-corrected density functional theory (DFT-D2*) calculations, and powder X-ray diffraction (PXRD) data; however, it has so far been applied only to organic HCl salts with small and rigid organic components, using 35Cl EFG tensor data for both structural refinement and validation. Herein, QNMRX-CSP is extended to ephedrine HCl (Eph) and pseudoephedrine HCl (Pse), which are diastereomeric compounds that feature distinct space groups and organic components that are larger and more flexible. A series of benchmarking calculations are used to generate structural models that are validated against experimental data, and to explore the impacts of the: (i) starting structural models (i.e., geometry-optimized fragments based on either a known crystal structure or an isolated gas-phase molecule) and (ii) selection of unit cell parameters and space groups. Finally, we use QNMRX-CSP to predict the structure of Pse in the dosage form Sudafed® using only 35Cl SSNMR data as experimental input. This proof-of-concept work suggests the possibility of employing QNMRX-CSP to solve the structures of organic HCl salts in dosage forms - something which is often beyond the capabilities of conventional, diffraction-based characterization methods.

Related Concept Videos

¹H NMR of Conformationally Flexible Molecules: Variable-Temperature NMR 01:15

1.1K

The axial and equatorial protons in cyclohexane can be distinguished by performing a variable-temperature NMR experiment. In this process, except for one proton, the remaining eleven protons are replaced by deuterium. The deuterium substitution avoids the possible peak splitting caused by the spin-spin coupling between the adjacent protons. The remaining proton flips between the axial and equatorial positions.

Figure 1. The temperature-dependent proton NMR spectra of cyclohexane.
Figure 1...

¹H NMR of Conformationally Flexible Molecules: Temporal Resolution 00:52

811

At room temperature, the chair conformer of cyclohexane undergoes rapid ring flipping between two equivalent chair conformers at a rate of approximately 105 times per second. These two chair conformers are in equilibrium. The rapid ring flipping results in the interconversion of the axial proton to an equatorial proton and an equatorial to the axial proton. Such interconversions are too rapid and cannot be detected on the NMR timescale. Hence, the NMR spectrometer cannot distinguish between the...

Adrenergic Agonists: Chemistry and Structure-Activity Relationship 01:16

2.6K

Adrenergic agonists' structure-activity relationship (SAR) determines their selectivity and efficacy. These agonists comprise a phenylethylamine moiety with an aromatic ring and an ethylamine side chain.
Aromatic ring substitutions: Substituting the aromatic ring with –OH groups at positions 3 and 4 yields catecholamines (e.g., epinephrine), which have a high affinity for adrenoceptors. Hydrogen bonding between –OH groups and receptors enhances adrenergic activity.
Separation of...

¹H NMR: Complex Splitting 01:13

1.3K

A proton M that is coupled to a proton X results in doublet signals for M. However, NMR-active nuclei can be simultaneously coupled to more than one nonequivalent nucleus. When M is coupled to a second proton A, such as in styrene oxide, each peak in the doublet is split into another doublet.
Splitting diagrams or splitting tree diagrams are routinely used to depict such complex couplings. While drawing splitting diagrams, the splitting with the larger coupling constant is usually applied...

Adrenergic Agonists: Mixed-Action Agents 01:28

689

Mixed-action adrenergic agonists, like ephedrine and pseudoephedrine, directly and indirectly affect adrenergic receptors. These agents stimulate adrenoceptors and indirectly release stored neurotransmitters, amplifying the adrenergic response.
Ephedrine and pseudoephedrine lack a catecholamine group, making them less susceptible to degradation by metabolic enzymes. They have increased oral bioavailability and lipophilicity, resulting in a longer duration of action. Their response is reduced by...

¹H NMR Chemical Shift Equivalence: Homotopic and Heterotopic Protons 01:03

2.3K

Protons in identical electronic environments within a molecule are chemically equivalent and have the same chemical shift. The replacement test is a useful tool to identify chemical equivalence and predict NMR spectra. A substituent replaces each of the protons being examined and the resulting molecules are compared. If the same molecule is obtained, the protons are equivalent or homotopic. Replacement of any hydrogens in ethane by chlorine yields chloroethane because all six protons are...