Dramatic changes in mitochondrial subcellular location and morphology accompany activation of the CO2 concentrating mechanism

  • 1 The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA 94305.
  • 2 SLAC National Accelerator Laboratory, Division of CryoElectron Microscopy and Bioimaging, Menlo Park, CA 94025.
  • 3 Department of Bioengineering, Stanford University, Stanford, CA 94305.
  • 4 Biology Department, Stanford University, Stanford, CA 94305.

Abstract

Dynamic changes in intracellular ultrastructure can be critical for the ability of organisms to acclimate to environmental conditions. Microalgae, which are responsible for ~50% of global photosynthesis, compartmentalize their Ribulose 1,5 Bisphosphate Carboxylase/Oxygenase (Rubisco) into a specialized structure known as the pyrenoid when the cells experience limiting CO2 conditions; this compartmentalization is a component of the CO2 Concentrating Mechanism (CCM), which facilitates photosynthetic CO2 fixation as environmental levels of inorganic carbon (Ci) decline. Changes in the spatial distribution of mitochondria in green algae have also been observed under CO2 limitation, although a role for this reorganization in CCM function remains unclear. We used the green microalga Chlamydomonas reinhardtii to monitor changes in mitochondrial position and ultrastructure as cells transition between high CO2 and Low/Very Low CO2 (LC/VLC). Upon transferring cells to VLC, the mitochondria move from a central to a peripheral cell location and orient in parallel tubular arrays that extend along the cell's apico-basal axis. We show that these ultrastructural changes correlate with CCM induction and are regulated by the CCM master regulator CIA5. The apico-basal orientation of the mitochondrial membranes, but not the movement of the mitochondrion to the cell periphery, is dependent on microtubules and the MIRO1 protein, with the latter involved in membrane-microtubule interactions. Furthermore, blocking mitochondrial respiration in VLC-acclimated cells reduces the affinity of the cells for Ci. Overall, our results suggest that mitochondrial repositioning functions in integrating cellular architecture and energetics with CCM activities and invite further exploration of how intracellular architecture can impact fitness under dynamic environmental conditions.

Related Concept Videos

The Inner Mitochondrial Membrane 01:28

3.2K

The inner mitochondrial membrane is the primary site of ATP synthesis. The inner membrane domain that forms a smooth layer adjacent to the outer membrane is called the inner boundary membrane. This domain contains membrane transporters that drive metabolites in and out of the mitochondria.  In contrast, the inner membrane network that invaginates into the matrix space is called the cristae membrane. This domain accounts for principle mitochondrial function as it accommodates the protein...

Mitochondrial Membranes 01:45

7.6K

A single mitochondrion is a bean-shaped organelle enclosed by a double-membrane system. The outer membrane of mitochondria is smooth and contains many porins - the integral membrane transporters. Porins enable free diffusion of ions and small uncharged molecules through the outer mitochondrial membrane but limit the transport of molecules larger than 5000 Daltons. Further, the outer mitochondrial membrane forms a unique structure called membrane contact sites with other subcellular organelles,...

Translocation of Proteins into the Mitochondria 01:19

3.0K

Mitochondrial precursors are translocated to the internal subcompartments via independent mechanisms involving distinct protein machineries called translocases.
Sorting of outer membrane proteins:
Mitochondrial outer membrane proteins are of two types: the transmembrane, beta-barrel porins, and the membrane-anchored, alpha-helical proteins. Beta-barrel porin precursors are translocated by the TOM complex and inserted into the outer mitochondrial membrane by the SAM complex. In contrast,...

Structure of Porins 01:21

2.9K

Mitochondria, chloroplasts, and gram-negative bacteria have transmembrane, beta-barrel proteins called porins to mediate the free diffusion of ions and metabolites across the membrane. Mitochondrial porin precursors contain conserved amino acid sequences called beta signals at their C-terminal. Beta signals have a  motif of PoXGXXHyXHy (Po-Polar, X-Any amino acid, G-Glycine, Hy-LargeHydrophobic), which are crucial for precursor recognition to initiate precursor assembly. Beta-barrel...

The Supercomplexes in the Crista Membrane 01:41

2.5K

The mitochondrial cristae membrane is the primary site for the oxidative phosphorylation (OXPHOS) process of energy conversion mediated through respiratory complexes I to V. These complexes have been widely studied for decades, and it has been proven that they form supramolecular structures called respiratory supercomplexes (SC). These higher-order complexes may be crucial in maintaining the biochemical structure and improving the physiological activity of the individual complexes while...

Chemiosmosis 01:32

96.9K

Oxidative phosphorylation is a highly efficient process that generates large amounts of adenosine triphosphate (ATP), the basic unit of energy that drives many cellular processes. Oxidative phosphorylation involves two processes— the electron transport chain and chemiosmosis.
Electron Transport Chain
The electron transport chain involves a series of protein complexes on the inner mitochondrial membrane that undergo a series of redox reactions. At the end of this chain, the electrons...