Intracellular Ebola virus nucleocapsid assembly revealed by in situ cryo-electron tomography

Affiliations
  • 1Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
  • 2Electron Microscopy Core, University of California, San Diego, La Jolla, CA 92037, USA.
  • 3Vanderbilt University Center for Structural Biology, Nashville, TN 37235, USA.
  • 4Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA. Electronic address: erica@lji.org.

|

Abstract

Filoviruses, including the Ebola and Marburg viruses, cause hemorrhagic fevers with up to 90% lethality. The viral nucleocapsid is assembled by polymerization of the nucleoprotein (NP) along the viral genome, together with the viral proteins VP24 and VP35. We employed cryo-electron tomography of cells transfected with viral proteins and infected with model Ebola virus to illuminate assembly intermediates, as well as a 9 Å map of the complete intracellular assembly. This structure reveals a previously unresolved third and outer layer of NP complexed with VP35. The intrinsically disordered region, together with the C-terminal domain of this outer layer of NP, provides the constant width between intracellular nucleocapsid bundles and likely functions as a flexible tether to the viral matrix protein in the virion. A comparison of intracellular nucleocapsids with prior in-virion nucleocapsid structures reveals that the nucleocapsid further condenses vertically in the virion. The interfaces responsible for nucleocapsid assembly are highly conserved and offer targets for broadly effective antivirals.

Related Concept Videos

JoVE Research Video for Cryo-electron Microscopy 01:28

3.0K

Conventional electron microscopy (EM) involves dehydration, fixation, and staining of biological samples, which distorts the native state of biological molecules and results in several artifacts. Also, the high-energy electron beam damages the sample and makes it difficult to obtain high-resolution images. These issues can be addressed using cryo-EM, which uses frozen samples and gentler electron beams. The technique was developed by Jacques Dubochet, Joachim Frank, and Richard Henderson, for…

JoVE Research Video for Electron Microscope Tomography and Single-particle Reconstruction 01:07

2.3K

Transmission electron microscopy (TEM) can be used to determine the 3D structure of biological samples with the help of techniques such as electron microscope tomography and single-particle reconstruction. While single-particle reconstruction can examine macromolecules and macromolecular complexes in vitro conditions only, tomography permits the study of cell components or small cells in vivo.
Electron Tomography
Electron tomography can be performed either in TEM or STEM (scanning transmission…

JoVE Research Video for Protein Complex Assembly 02:41

10.1K

Proteins can form homomeric complexes with another unit of the same protein or heteromeric complexes with different types.  Most protein complexes self-assemble spontaneously via ordered pathways, while some proteins need assembly factors that guide their proper assembly. Despite the crowded intracellular environment, proteins usually interact with their correct partners and form functional complexes.
Many viruses self-assemble into a fully functional unit using the infected host cell to…