Wind gates olfaction-driven search states in free flight

Affiliations
  • 1Integrative Neuroscience Program, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, USA; Ecology Evolution and Conservation Biology Program, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, USA; Department of Mechanical Engineering, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, USA.

|

Abstract

For organisms tracking a chemical cue to its source, the motion of their surrounding fluid provides crucial information for success. Swimming and flying animals engaged in olfaction-driven search often start by turning into the direction of an oncoming wind or water current. However, it is unclear how organisms adjust their strategies when directional cues are absent or unreliable, as is often the case in nature. Here, we use the genetic toolkit of Drosophila melanogaster to develop an optogenetic paradigm to deliver temporally precise “virtual” olfactory experiences for free-flying animals in either laminar wind or still air. We first confirm that in laminar wind flies turn upwind. Furthermore, we show that they achieve this using a rapid (∼100 ms) turn, implying that flies estimate the ambient wind direction prior to “surging” upwind. In still air, flies adopt a remarkably stereotyped “sink and circle” search state characterized by ∼60° turns at 3-4 Hz, biased in a consistent direction. Together, our results show that Drosophila melanogaster assesses the presence and direction of ambient wind prior to deploying a distinct search strategy. In both laminar wind and still air, immediately after odor onset, flies decelerate and often perform a rapid turn. Both maneuvers are consistent with predictions from recent control theoretic analyses for how insects may estimate properties of wind while in flight. We suggest that flies may use their deceleration and “anemometric” turn as active sensing maneuvers to rapidly gauge properties of their wind environment before initiating a proximal or upwind search routine.

Related Concept Videos

JoVE Research Video for Plane Potential Flows 01:23

17

Plane potential flows simplify fluid motion by assuming the fluid to be irrotational and incompressible. These characteristics allow these flows to be described by a velocity potential function, ϕ, representing the flow speed in a given direction, and a stream function, ψ, that visualizes the flow path, both governed by Laplace's equation. These parameters help in estimating flow patterns, velocity distributions, and pressure fields around various hydraulic structures.
Uniform…

JoVE Research Video for Laminar Flow: Problem Solving 01:24

13

Laminar flow occurs when a fluid moves smoothly in parallel layers with minimal mixing and turbulence. In fluid mechanics, ensuring laminar flow within a pipe is essential for precise control of flow characteristics, especially in engineering applications. The key factor in determining whether flow remains laminar is the Reynolds number, a dimensionless quantity that depends on the fluid's velocity, density, viscosity, and the pipe's diameter. A Reynolds number of 2100 or lower…

JoVE Research Video for Olfaction 01:25

42.8K

The sense of smell is achieved through the activities of the olfactory system. It starts when an airborne odorant enters the nasal cavity and reaches olfactory epithelium (OE). The OE is protected by a thin layer of mucus, which also serves the purpose of dissolving more complex compounds into simpler chemical odorants. The size of the OE and the density of sensory neurons varies among species; in humans, the OE is only about 9-10 cm2.
The olfactory receptors are embedded in the cilia of the…

JoVE Research Video for Laminar Flow 01:27

16

Laminar flow represents a smooth, orderly fluid motion where particles move along parallel paths, resulting in minimal mixing between layers. Streamlined particle paths characterize this flow regime and occur under conditions where viscous forces dominate over inertial forces. The distinction between laminar, transitional, and turbulent flow is primarily determined by the Reynolds number, a dimensionless quantity calculated as:

where ρ is the fluid density, v is the flow velocity, D is…