Chromatin context-dependent effects of epigenetic drugs on CRISPR-Cas9 editing

Affiliations
  • 1Oncode Institute, The Netherlands.
  • 2Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands.
  • 3Division of Cell Biology, 1066 CX Amsterdam, The Netherlands.
  • 4Division of Molecular Carcinogenesis, 1066 CX Amsterdam, The Netherlands.
  • 5Division of Oncogenomics, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.
  • 6Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.

Published on:

Abstract

The efficiency and outcome of CRISPR/Cas9 editing depends on the chromatin state at the cut site. It has been shown that changing the chromatin state can influence both the efficiency and repair outcome, and epigenetic drugs have been used to improve Cas9 editing. However, because the target proteins of these drugs are not homogeneously distributed across the genome, the efficacy of these drugs may be expected to vary from locus to locus. Here, we systematically analyzed this chromatin context-dependency for 160 epigenetic drugs. We used a human cell line with 19 stably integrated reporters to induce a double-stranded break in different chromatin environments. We then measured Cas9 editing efficiency and repair pathway usage by sequencing the mutational signatures. We identified 58 drugs that modulate Cas9 editing efficiency and/or repair outcome dependent on the local chromatin environment. For example, we find a subset of histone deacetylase inhibitors that improve Cas9 editing efficiency throughout all types of heterochromatin (e.g. PCI-24781), while others were only effective in euchromatin and H3K27me3-marked regions (e.g. apicidin). In summary, this study reveals that most epigenetic drugs alter CRISPR editing in a chromatin-dependent manner, and provides a resource to improve Cas9 editing more selectively at the desired location.

Related Concept Videos

JoVE Research Video for CRISPR 01:59

46.6K

Genome editing technologies allow scientists to modify an organism’s DNA via the addition, removal, or rearrangement of genetic material at specific genomic locations. These types of techniques could potentially be used to cure genetic disorders such as hemophilia and sickle cell anemia. One popular and widely used DNA-editing research tool that could lead to safe and effective cures for genetic disorders is the CRISPR-Cas9 system. CRISPR-Cas9 stands for Clustered Regularly Interspaced…

JoVE Research Video for CRISPR and crRNAs 02:53

15.1K

Bacteria and archaea are susceptible to viral infections just like eukaryotes; therefore, they have developed a unique adaptive immune system to protect themselves. Clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR-Cas) are present in more than 45% of known bacteria and 90% of known archaea.
The CRISPR-Cas system stores a copy of foreign DNA in the host genome and uses it to identify the foreign DNA upon reinfection. CRISPR-Cas has three different…

JoVE Research Video for Homologous Recombination 02:31

48.8K

The basic reaction of homologous recombination (HR) involves two chromatids that contain DNA sequences sharing a significant stretch of identity. One of these sequences uses a strand from another as a template to synthesize DNA in an enzyme-catalyzed reaction. The final product is a novel amalgamation of the two substrates. To ensure an accurate recombination of sequences, HR is restricted to the S and G2 phases of the cell cycle. At these stages, the DNA has been replicated already and the…

JoVE Research Video for Epigenetic Regulation 01:37

2.8K

Epigenetic changes alter the physical structure of the DNA without changing the genetic sequence and often regulate whether genes are turned on or off. This regulation ensures that each cell produces only proteins necessary for its function. For example, proteins that promote bone growth are not produced in muscle cells. Epigenetic mechanisms play an essential role in healthy development. Conversely, precisely regulated epigenetic mechanisms are disrupted in diseases like cancer.
X-chromosome…

JoVE Research Video for Chromatin Modification in iPS Cells 01:32

1.6K

Chromatin modification alters gene expression; therefore, scientists can add histone-modifying enzymes, histone variants, and chromatin remodeling complexes to somatic cells to aid reprogramming into pluripotent stem (iPS) cells.
Compact chromatin makes reprogramming difficult. Enzymes, such as histone demethylases and acetyltransferases, are often added during reprogramming to loosen the chromatin, making the DNA more accessible to transcription factors. Molecules that inhibit histone…

JoVE Research Video for Chromatin Structure Regulates pre-mRNA Processing 02:41

6.6K

In eukaryotic cells, nascent mRNA transcripts need to undergo many post-transcriptional modifications to reach the cell cytoplasm and translate into functional proteins. For a long time, transcription and pre-mRNA processing were considered two independent events that occur sequentially in the cell. However, it has now been well established that transcription and pre-mRNA processing are two simultaneous processes that are precisely regulated inside the cell.
The chromatin structure, especially…