RESISTANCE TO PHYTOPHTHORA1 promotes cytochrome b559 formation during early photosystem II biogenesis in Arabidopsis

Affiliations
  • 1Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
  • 2Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
  • 3Department of Molecular Biology and Plant Biology, University of Geneva, Geneva 1211, Switzerland.

|

Abstract

As an essential intrinsic component of photosystem II (PSII) in all oxygenic photosynthetic organisms, heme-bridged heterodimer cytochrome b559 (Cyt b559) plays critical roles in the protection and assembly of PSII. However, the underlying mechanisms of Cyt b559 assembly are largely unclear. Here, we characterized the Arabidopsis (Arabidopsis thaliana) rph1 (resistance to Phytophthora1) mutant, which was previously shown to be susceptible to the oomycete pathogen Phytophthora brassicae. Loss of RPH1 leads to a drastic reduction in PSII accumulation, which can be primarily attributed to the defective formation of Cyt b559. Spectroscopic analyses showed that the heme level in PSII supercomplexes isolated from rph1 is significantly reduced, suggesting that RPH1 facilitates proper heme assembly in Cyt b559. Due to the loss of RPH1-mediated processes, a covalently bound PsbE-PsbF heterodimer is formed during the biogenesis of PSII. In addition, rph1 is highly photosensitive and accumulates elevated levels of reactive oxygen species under photoinhibitory-light conditions. RPH1 is a conserved intrinsic thylakoid protein present in green algae and terrestrial plants, but absent in Synechocystis, and it directly interacts with the subunits of Cyt b559. Thus, our data demonstrate that RPH1 represents a chloroplast acquisition specifically promoting the efficient assembly of Cyt b559, probably by mediating proper heme insertion into the apo-Cyt b559 during the initial phase of PSII biogenesis.

Related Concept Videos

JoVE Research Video for Photosystem II 01:22

68.0K

The multi-protein complex photosystem II (PS II) harvests photons and transfers their energy through its bound pigments to its reaction center, and ultimately to photosystem I (PSI) through the electron transport chain. The pigments responsible for caputirng the light energy in photosystems include chlorophyll a, chlorophyll b, and carotenoids.
The pigment molecules are arranged across  two photosystem domains — the antenna complex and the reaction center. The main aim of the pigment…

JoVE Research Video for Photosystem I 01:27

60.3K

Although structurally similar to photosystem II (PSII), photosystem I (PSI) is has a different electron supplier and electron acceptor.
Both these photosystems work in concert. An excited electron from PSII is relayed to PSI via an electron transport chain in the thylakoid membrane of the chloroplast, which is comprised of the carrier molecule plastoquinone, the dual-protein cytochrome complex, and plastocyanin. As electrons move between PSII and PSI, they lose energy and must be re-energized…

JoVE Research Video for The Z-Scheme of Electron Transport in Photosynthesis 01:34

8.9K

The light reactions of photosynthesis assume a linear flow of electrons from water to NADP+. During this process, light energy drives the splitting of water molecules to produce oxygen. However, oxidation of water molecules is a thermodynamically unfavorable reaction and requires a strong oxidizing agent. This is accomplished by the first product of light reactions: oxidized P680 (or P680+), the most powerful oxidizing agent known in biology. The oxidized P680 that acquires an electron from the…

JoVE Research Video for Biological Clocks and Seasonal Responses 02:45

34.1K

The circadian—or biological—clock is an intrinsic, timekeeping, molecular mechanism that allows plants to coordinate physiological activities over 24-hour cycles called circadian rhythms. Photoperiodism is a collective term for the biological responses of plants to variations in the relative lengths of dark and light periods. The period of light-exposure is called the photoperiod.

One example of photoperiodism in plants is seasonal flowering. Scientists believe that plants are cued…

JoVE Research Video for Protein Transport to the Inner Chloroplast Membrane 01:18

2.0K

Proteins targeted to the inner chloroplast membrane, or plastid proteins, are transported by two general pathways: the stop-transfer and the re-insertion or post-import pathways. Most plastid proteins carry N-terminal transit sequences and internal import sequences targeting it to the specific chloroplast subcompartment. Proteins targeted by the stop-transfer pathway have internal hydrophobic sequences that inhibit their translocation into the stroma. As a result, these precursors are arrested…

JoVE Research Video for Photoreceptors and Plant Responses to Light 02:00

19.4K

Light plays a significant role in regulating the growth and development of plants. In addition to providing energy for photosynthesis, light provides other important cues to regulate a range of developmental and physiological responses in plants.

What Is a Photoreceptor?

Plants respond to light using a unique set of light-sensitive proteins called photoreceptors. Photoreceptors contain photopigments, which consist of a protein component bound to a non-protein, light-absorbing pigment called…