Recurrent gene flow between Neanderthals and modern humans over the past 200,000 years

Affiliations
  • 1Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing 210009, China.
  • 2The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA.

Published on:

Abstract

Although it is well known that the ancestors of modern humans and Neanderthals admixed, the effects of gene flow on the Neanderthal genome are not well understood. We develop methods to estimate the amount of human-introgressed sequences in Neanderthals and apply it to whole-genome sequence data from 2000 modern humans and three Neanderthals. We estimate that Neanderthals have 2.5 to 3.7% human ancestry, and we leverage human-introgressed sequences in Neanderthals to revise estimates of Neanderthal ancestry in modern humans, show that Neanderthal population sizes were significantly smaller than previously estimated, and identify two distinct waves of modern human gene flow into Neanderthals. Our data provide insights into the genetic legacy of recurrent gene flow between modern humans and Neanderthals.

Related Concept Videos

JoVE Research Video for Gene Flow 02:39

32.7K

Gene flow is the transfer of genes among populations, resulting from either the dispersal of gametes or from the migration of individuals.

This phenomenon plays a significant evolutionary role in all organisms, and depending on the rates of gene flow, the mechanism either induces genetic diversity or generates genetic homogeneity among populations. When the rate of gene flow is low, the introduction of new alleles into a population generates genetic diversity. On the other hand, a high rate of…

JoVE Research Video for Gene Conversion 02:08

9.3K

Other than maintaining genome stability via DNA repair, homologous recombination plays an important role in diversifying the genome. In fact, the recombination of sequences forms the molecular basis of genomic evolution. Random and non-random permutations of genomic sequences create a library of new amalgamated sequences. These newly formed genomes can determine the fitness and survival of cells. In bacteria, homologous and non-homologous types of recombination lead to the evolution of new…

JoVE Research Video for Mutation, Gene Flow, and Genetic Drift 01:09

55.4K

In a population that is not at Hardy-Weinberg equilibrium, the frequency of alleles changes over time. Therefore, any deviations from the five conditions of Hardy-Weinberg equilibrium can alter the genetic variation of a given population. Conditions that change the genetic variability of a population include mutations, natural selection, non-random mating, gene flow, and genetic drift (small population size).

Mechanisms of Genetic Variation

The original sources of genetic variation are…

JoVE Research Video for Exon Recombination 02:32

3.4K

The evolution of new genes is critical for speciation. Exon recombination, also known as exon shuffling or domain shuffling, is an important means of new gene formation. It is observed across vertebrates, invertebrates, and in some plants such as potatoes and sunflowers. During exon recombination, exons from the same or different genes recombine and produce new exon-intron combinations, which might evolve into new genes. 
Exon shuffling follows “splice frame rules.” Each exon…

JoVE Research Video for Genome Size and the Evolution of New Genes 03:21

7.6K

While every living organism has a genome of some kind (be it RNA, or DNA), there is considerable variation in the sizes of these blueprints. One major factor that impacts genome size is whether the organism is prokaryotic or eukaryotic. In prokaryotes, the genome contains little to no non-coding sequence, such that genes are tightly clustered in groups or operons sequentially along the chromosome. Conversely, the genes in eukaryotes are punctuated by long stretches of non-coding sequence.

JoVE Research Video for Types of Genetic Transfer Between Organisms 02:18

26.0K

Genetic transfer occurs when genetic information is passed from one organism to another. It occurs via two mechanisms: vertical gene transfer and horizontal gene transfer. Vertical gene transfer occurs when genetic information is transferred from one generation to the next, which happens much more frequently than horizontal gene transfer. Both sexual and asexual reproduction are forms of vertical gene transfer, where one or more organisms pass some or all of their genome onto their progeny.