LncRNA LOC730101 Promotes Darolutamide Resistance in Prostate Cancer by Suppressing miR-1-3p

Affiliations
  • 1Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
  • 2Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA.
  • 3Department of Medicine-Cancer Biology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.

Published on:

Abstract

Antiandrogen is part of the standard-of-care treatment option for metastatic prostate cancer. However, prostate cancers frequently relapse, and the underlying resistance mechanism remains incompletely understood. This study seeks to investigate whether long non-coding RNAs (lncRNAs) contribute to the resistance against the latest antiandrogen drug, darolutamide. Our RNA sequencing analysis revealed significant overexpression of LOC730101 in darolutamide-resistant cancer cells compared to the parental cells. Elevated LOC730101 levels were also observed in clinical samples of metastatic castration-resistant prostate cancer (CRPC) compared to primary prostate cancer samples. Silencing LOC730101 with siRNA significantly impaired the growth of darolutamide-resistant cells. Additional RNA sequencing analysis identified a set of genes regulated by LOC730101, including key players in the cell cycle regulatory pathway. We further demonstrated that LOC730101 promotes darolutamide resistance by competitively inhibiting microRNA miR-1-3p. Moreover, by Hi-C sequencing, we found that is located in a topologically associating domain (TAD) that undergoes specific gene induction in darolutamide-resistant cells. Collectively, our study demonstrates the crucial role of the lncRNA LOC730101 in darolutamide resistance and its potential as a target for overcoming antiandrogen resistance in CRPC.

Related Concept Videos

JoVE Research Video for MicroRNAs 01:22

20.3K

MicroRNA (miRNA) are short, regulatory RNA transcribed from introns—non-coding regions of a gene—or intergenic regions—stretches of DNA present between genes. Several processing steps are required to form biologically active, mature miRNA. The initial transcript, called primary miRNA (pri-mRNA), base-pairs with itself forming a stem-loop structure. Within the nucleus, an endonuclease enzyme, called Drosha, shortens the stem-loop structure into hairpin-shaped pre-miRNA. After…

JoVE Research Video for lncRNA - Long Non-coding RNAs 02:39

8.2K

In humans, more than 80% of the genome gets transcribed. However, only around 2% of the genome codes for proteins. The remaining part produces non-coding RNAs which includes ribosomal RNAs, transfer RNAs, telomerase RNAs, and regulatory RNAs, among other types. A large number of regulatory non-coding RNAs have been classified into two groups depending upon their length – small non-coding RNAs, such as microRNA, which are less than 200 nucleotides in length, and long non-coding RNA…

JoVE Research Video for mTOR Signaling and Cancer Progression 03:03

3.5K

The mammalian target of rapamycin or mTOR protein was discovered in 1994 due to its direct interaction with rapamycin. The protein gets its name from a yeast homolog called TOR. The mTOR protein complex in mammalian cells plays a major role in balancing anabolic processes such as the synthesis of proteins, lipids, and nucleotides and catabolic processes, such as autophagy in response to environmental cues, such as availability of nutrients and growth factors.
The mTOR pathway or the…