Dual roles of the MPK3 and MPK6 mitogen-activated protein kinases in regulating Arabidopsis stomatal development

Affiliations
  • 1College of Plant Protection, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
  • 2Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA.
  • 3Division of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA.

|

Abstract

An Arabidopsis (Arabidopsis thaliana) mitogen-activated protein kinase (MAPK) cascade composed of YODA (YDA)-MKK4/MKK5-MPK3/MPK6 plays an essential role downstream of the ERECTA (ER)/ER-LIKE (ERL) receptor complex in regulating stomatal development in the leaf epidermis. STOMAGEN (STO), a peptide ligand produced in mesophyll cells, competes with EPIDERMAL PATTERNING FACTOR2 (EPF2) for binding ER/ERL receptors to promote stomatal formation. In this study, we found that activation of MPK3/MPK6 suppresses STO expression. Using MUTE and STO promoters that confer epidermis- and mesophyll-specific expression, respectively, we generated lines with cell-specific activation and suppression of MPK3/MPK6. The activation or suppression of MPK3/MPK6 in either epidermis or mesophyll cells is sufficient to alter stomatal differentiation. Epistatic analyses demonstrated that STO overexpression can rescue the suppression of stomatal formation conferred by the mesophyll-specific expression of the constitutively active MKK4DD or MKK5DD, but not by the epidermis-specific expression of these constitutively active MKKs. These data suggest that STO is downstream of MPK3/MPK6 in mesophyll cells, but upstream of MPK3/MPK6 in epidermal cells in stomatal development signaling. This function of the MPK3/MPK6 cascade allows it to coordinate plant epidermis development based on its activity in mesophyll cells during leaf development.

Related Concept Videos

JoVE Research Video for Regulation of Transpiration by Stomata 02:04

27.0K

During photosynthesis, plants acquire the necessary carbon dioxide and release the produced oxygen back into the atmosphere. Openings in the epidermis of plant leaves is the site of this exchange of gasses. A single opening is called a stoma—derived from the Greek word for “mouth.” Stomata open and close in response to a variety of environmental cues.

Each stoma is flanked by two specialized guard cells that create an opening when these cells take up water. The transport of…

JoVE Research Video for Cell Signaling in Plants 01:25

5.0K

Plant cells communicate to coordinate their cycle of growth, flowering and fruiting, and activities in roots, shoots, and leaves in response to the changing environmental conditions. Plant signaling is distinct from animal signaling. Plants primarily utilize enzyme-linked receptors, whereas the largest class of cell-surface receptors in animals are G-protein coupled receptors (GPCRs). Unlike animals, receptor tyrosine kinases are rare in plants. Instead, plants have a diverse class of…

JoVE Research Video for C4 Pathway and CAM 01:27

44.2K

Most plants use the C3 pathway for carbon fixation. However, some plants, such as sugar cane, corn, and cacti that grow in hot conditions, use alternative pathways to fix carbon and conserve energy loss due to photorespiration. Photorespiration is the process that occurs when the oxygen concentration is high. Under such conditions, the rubisco enzyme in the Calvin cycle binds O2 instead of CO2, which halts photosynthesis and consumes energy.
C4 Pathway
The C4 pathway is used by plants such as…

JoVE Research Video for MAPK Signaling Cascades 01:07

4.7K

Mitogen-activated protein kinase, or MAPK pathway, activates three sequential kinases to regulate cellular responses such as proliferation, differentiation, survival, and apoptosis. The canonical MAPK pathway starts with a mitogen or growth factor binding to an RTK. The activated RTKs stimulate Ras, which recruits Raf or MAP3 Kinase (MAPKKK), the first kinase of the MAPK signaling cascade. Raf further phosphorylates and activates MEK or MAP2 Kinases (MAPKK), which in turn phosphorylates MAP…

JoVE Research Video for Morphogenesis 02:19

23.0K

Plant morphogenesis—the development of a plant’s form and structure—involves several overlapping developmental processes, including growth and cell differentiation. Precursor cells differentiate into specific cell types, which are organized into the tissues and organ systems that make up the functional plant.

Plant growth and cell differentiation are under complex hormonal control. Plant hormones regulate gene expression, often in response to environmental stimuli. For…

JoVE Research Video for Adaptations that Reduce Water Loss 01:57

24.3K

Though evaporation from plant leaves drives transpiration, it also results in loss of water. Because water is critical for photosynthetic reactions and other cellular processes, evolutionary pressures on plants in different environments have driven the acquisition of adaptations that reduce water loss.

In land plants, the uppermost cell layer of a plant leaf, called the epidermis, is coated with a waxy substance called the cuticle. This hydrophobic layer is composed of the polymer cutin and…