The modified RNA base acp(3)U is an attachment site for N-glycans in glycoRNA

Affiliations
  • 1Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
  • 2Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
  • 3Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
  • 4Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford, CA, USA.
  • 5Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA. Electronic address: bagarcia@wustl.edu.
  • 6Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA. Electronic address: ryan.flynn@childrens.harvard.edu.

|

Abstract

GlycoRNA consists of RNAs modified with secretory N-glycans that are presented on the cell surface. Although previous work supported a covalent linkage between RNA and glycans, the direct chemical nature of the RNA-glycan connection was not described. Here, we develop a sensitive and scalable protocol to detect and characterize native glycoRNAs. Leveraging RNA-optimized periodate oxidation and aldehyde ligation (rPAL) and sequential window acquisition of all theoretical mass spectra (SWATH-MS), we identified the modified RNA base 3-(3-amino-3-carboxypropyl)uridine (acpU) as a site of attachment of N-glycans in glycoRNA. rPAL offers sensitivity and robustness as an approach for characterizing direct glycan-RNA linkages occurring in cells, and its flexibility will enable further exploration of glycoRNA biology.

Related Concept Videos

JoVE Research Video for Transfer RNA Synthesis 02:36

11.4K

One of the unique features of tRNA is the presence of modified bases. In some tRNAs, modified bases account for nearly 20% of the total bases in the molecule. Altogether, these unusual bases protect the tRNA from enzymatic degradation by RNases.
Each of these chemical modifications is carried by a specific enzyme, post-transcription. All of these enzymes have unique base and site-specificity. Methylation, the most common chemical modification, is carried by at least nine different enzymes, with…

JoVE Research Video for Nucleic Acid Structure 01:25

4.9K

The pentose sugar in DNA is deoxyribose, while in RNA the pentose sugar is ribose. The difference between the sugars is the presence of the hydroxyl group on the ribose's second carbon and a hydrogen on the deoxyribose's second carbon. The phosphate residue attaches to the hydroxyl group of the 5′ carbon of one sugar and the hydroxyl group of the 3′ carbon of the sugar of the next nucleotide, which forms  a 5′ to 3′ phosphodiester linkage.
DNA Structure
DNA…

JoVE Research Video for Oligosaccharide Assembly 01:24

2.6K

Protein glycosylation starts in the ER lumen and continues in the Golgi apparatus. Glycosyltransferases catalyze the addition of sugar molecules or glycosylation of proteins. Usually, these enzymes add sugars to the hydroxyl groups of selected serine or threonine residues to form O-linked glycans or the amino groups of asparagine residues to form N-linked glycans. Different positions on the same polypeptide chain can contain differently linked glycans.
Multiple sugar molecules that may or may…

JoVE Research Video for RNA Editing 02:23

8.4K

RNA editing is a post-transcriptional modification where a precursor mRNA (pre-mRNA) nucleotide sequence is changed by base insertion, deletion, or modification. The extent of RNA editing varies from a few hundred bases, in mitochondrial DNA of trypanosomes, to a just single base, in nuclear genes of mammals. Even a single base change in the pre-mRNA can convert a codon for one amino acid into the codon for another amino acid or a stop codon. This type of re-coding can significantly affect the…

JoVE Research Video for Nucleic Acids 02:43

41.0K

Nucleic acids are the most important macromolecules for the continuity of life. They carry the cell's genetic blueprint and carry instructions for its functioning.
DNA and RNA
The two main types of nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). DNA is the genetic material in all living organisms, ranging from single-celled bacteria to multicellular mammals. It is in the nucleus of eukaryotes and in the organelles, chloroplasts, and mitochondria. In prokaryotes,…

JoVE Research Video for Protein Glycosylation 01:25

5.8K

Glycosylation, the most common post-translational modification for proteins, serves diverse functions. Adding sugars to proteins makes the proteins more resistant to proteolytic digestion. Glycosylated proteins can act as markers and receptors to promote cell-cell adhesion. Additionally, they have many essential quality control functions in the cell, such as correct protein folding and facilitating transport of misfolded proteins to the cytosol, which can be degraded.
Glycosylation occurs in…