DORQ-seq: high-throughput quantification of femtomol tRNA pools by combination of cDNA hybridization and Deep sequencing

Affiliations
  • 1Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany.
  • 2IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France.
  • 3Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France.
  • 4Université de Lorraine, IMoPA UMR7365 CNRS-UL, BioPole, 54000 Nancy, France.
  • 5Université de Lorraine, Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, UAR2008 IBSLor (CNRS-UL)/US40 (INSERM), 54000 Nancy, France.

Published on:

Abstract

Due to its high modification content tRNAs are notoriously hard to quantify by reverse transcription and RNAseq. Bypassing numerous biases resulting from concatenation of enzymatic treatments, we here report a hybrid approach that harnesses the advantages of hybridization-based and deep sequencing-based approaches. The method renders obsolete any RNAseq related workarounds and correction factors that affect accuracy, sensitivity, and turnaround time. Rather than by reverse transcription, quantitative information on the isoacceptor composition of a tRNA pool is transferred to a cDNA mixture in a single step procedure, thereby omitting all enzymatic conversations except for the subsequent barcoding PCR. As a result, a detailed tRNA composition matrix can be obtained from femtomolar amounts of total tRNA. The method is fast, low in cost, and its bioinformatic data workup surprisingly simple. These properties make the approach amenable to high-throughput investigations including clinical samples, as we have demonstrated by application to a collection of variegated biological questions, each answered with novel findings. These include tRNA pool quantification of polysome-bound tRNA, of tRNA modification knockout strains under stress conditions, and of Alzheimer patients’ brain tissues.

Related Concept Videos

JoVE Research Video for RNA-seq 03:21

9.1K

RNA sequencing, or RNA-Seq, is a high-throughput sequencing technology used to study the transcriptome of a cell. Transcriptomics helps to interpret the functional elements of a genome and identify the molecular constituents of an organism. Additionally, it also helps in understanding the development of an organism and the occurrence of diseases. 
Before the discovery of RNA-seq, microarray-based methods and Sanger sequencing were used for transcriptome analysis. However, while…

JoVE Research Video for Real Time RT-PCR 02:57

54.0K

Real-time reverse transcription-polymerase chain reaction, or Real-time RT-PCR, is an analytical tool used to determine the expression level of target genes. The method involves converting mRNA to complementary DNA with the help of an enzyme known as reverse transcriptase, followed by the PCR amplification of the cDNA. These two processes can be performed simultaneously in a single tube or separately as a two-step reaction.
The real-time quantification of the number of amplified products is…

JoVE Research Video for Ribosome Profiling 02:24

3.3K

Ribosome profiling or ribo-sequencing is a deep sequencing technique that produces a snapshot of active translation in a cell. It selectively sequences the mRNAs protected by ribosomes to get an insight into a cell’s translation landscape at any given point in time.
Applications of ribosome profiling
Ribosome profiling has many applications, including in vivo monitoring of translation inside a particular organ or tissue type and quantifying new protein synthesis levels.
The technique…