The transition state for coupled folding and binding of a disordered DNA binding domain resembles the unbound state

Affiliations
  • 1Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.

Published on:

Abstract

The basic zippers (bZIPs) are one of two large eukaryotic families of transcription factors whose DNA binding domains are disordered in isolation but fold into stable α-helices upon target DNA binding. Here, we systematically disrupt pre-existing helical propensity within the DNA binding region of the homodimeric bZIP domain of cAMP-response element binding protein (CREB) using Ala-Gly scanning and examine the impact on target binding kinetics. We find that the secondary structure of the transition state strongly resembles that of the unbound state. The residue closest to the dimerization domain is largely folded within both unbound and transition states; dimerization apparently propagates additional helical propensity into the basic region. The results are consistent with electrostatically-enhanced DNA binding, followed by rapid folding from the folded zipper outwards. Fly-casting theory suggests that protein disorder can accelerate binding. Interestingly however, we did not observe higher association rate constants for mutants with lower levels of residual structure in the unbound state.

Related Concept Videos

JoVE Research Video for Single-Strand DNA Binding Proteins 01:03

13.1K

For successful DNA replication, the unwinding of double-stranded DNA must be accompanied by stabilization and protection of the separated single strands of the DNA. This crucial task is performed by single-strand DNA-binding (SSB) proteins. They bind to the DNA in a sequence-independent manner, which means that the nitrogenous bases of the DNA need not be present in a specific order for binding of SSB proteins to it. The binding of SSB proteins straightens single-stranded DNA (ssDNA) and makes…

JoVE Research Video for Molecular Chaperones and Protein Folding 03:00

17.2K

The native conformation of a protein is formed by interactions between the side chains of its constituent amino acids. When the amino acids cannot form these interactions, the protein cannot fold by itself and needs chaperones. Notably, chaperones do not relay any additional information required for the folding of polypeptides; the native conformation of a protein is determined solely by its amino acid sequence. Chaperones catalyze protein folding without being a part of the folded protein.
The…

JoVE Research Video for Cooperative Binding of Transcription Regulators 02:13

5.9K

Transcriptional regulators bind to specific cis-regulatory sequences in the DNA to regulate gene transcription. These cis-regulatory sequences are very short, usually less than ten nucleotide pairs in length. The short length means that there is a high probability of the exact same sequence randomly occurring throughout the genome.  Since regulators can also bind to groups of similar sequences, this further increases the chances of random binding. Transcriptional regulators form…

JoVE Research Video for Conserved Binding Sites 01:49

4.0K

Many proteins’ biological role depends on their interactions with their ligands, small molecules that bind to specific locations on the protein known as ligand-binding sites. Ligand-binding sites are often conserved among homologous proteins as these sites are critical for protein function.
Binding sites are often located in large pockets, and if their location on a protein’s surface is unknown, it can be predicted using various approaches. The energetic method computationally…

JoVE Research Video for Protein Folding 01:22

113.1K

Overview

Proteins are chains of amino acids linked together by peptide bonds. Upon synthesis, a protein folds into a three-dimensional conformation which is critical to its biological function. Interactions between its constituent amino acids guide protein folding, and hence the protein structure is primarily dependent on its amino acid sequence.

Protein Structure Is Critical to Its Biological Function

Proteins perform a wide range of biological functions such as catalyzing chemical…

JoVE Research Video for DNA Topoisomerases 02:02

29.4K

Topoisomerases are enzymes that relax overwound DNA molecules during various cell processes, including DNA replication and transcription. These enzymes regulate positive and negative DNA supercoiling without changing the nucleotide sequence. DNA overwinding in a clockwise direction results in positively supercoiled DNA, whereas underwinding in a counterclockwise direction produces negatively supercoiled DNA.
Types and Mechanism of action
Topoisomerases are divided into two main types. …