Molecular basis of global promoter sensing and nucleosome capture by the SWR1 chromatin remodeler

Affiliations
  • 1Department of Biology, Johns Hopkins University, Baltimore, MD, USA. Electronic address: rklouder@jhu.edu.
  • 2Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
  • 3Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
  • 4Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
  • 5Department of Chemistry, University of Konstanz, Konstanz, Germany; Department of Biology, University of Konstanz, Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
  • 6Department of Biology, University of Konstanz, Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
  • 7Department of Biology, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA. Electronic address: wuc@jhu.edu.

|

Abstract

The SWR1 chromatin remodeling complex is recruited to +1 nucleosomes downstream of transcription start sites of eukaryotic promoters, where it exchanges histone H2A for the specialized variant H2A.Z. Here, we use cryoelectron microscopy (cryo-EM) to resolve the structural basis of the SWR1 interaction with free DNA, revealing a distinct open conformation of the Swr1 ATPase that enables sliding from accessible DNA to nucleosomes. A complete structural model of the SWR1-nucleosome complex illustrates critical roles for Swc2 and Swc3 subunits in oriented nucleosome engagement by SWR1. Moreover, an extended DNA-binding α helix within the Swc3 subunit enables sensing of nucleosome linker length and is essential for SWR1-promoter-specific recruitment and activity. The previously unresolved N-SWR1 subcomplex forms a flexible extended structure, enabling multivalent recognition of acetylated histone tails by reader domains to further direct SWR1 toward the +1 nucleosome. Altogether, our findings provide a generalizable mechanism for promoter-specific targeting of chromatin and transcription complexes.

Related Concept Videos

JoVE Research Video for Nucleosome Remodeling 02:54

8.3K

Nucleosomes are the basic units of chromatin compaction. Each nucleosome consists of the DNA bound tightly around a histone core, which makes the DNA inaccessible to DNA binding proteins such as DNA polymerase and RNA polymerase. Hence, the fundamental problem is to ensure access to DNA when appropriate, despite the compact and protective chromatin structure.
Nucleosome remodeling complex
Eukaryotic cells have specialized enzymes called ATP-dependent nucleosome remodeling enzymes. These enzymes…

JoVE Research Video for Spreading of Chromatin Modifications 02:25

7.8K

The histone proteins in the nucleosomes are post-translationally modified (PTM) to increase or decrease access to DNA. The commonly observed PTMs are methylation, acetylation, phosphorylation, and ubiquitination of lysine amino acids in the histone H3 tail region. These histone modifications have specific meaning for the cell. Hence, they are called "histone code". The protein complex involved in histone modification is termed as "reader-writer" complex.
Writers
The writer…

JoVE Research Video for Chromatin Structure Regulates pre-mRNA Processing 02:41

6.6K

In eukaryotic cells, nascent mRNA transcripts need to undergo many post-transcriptional modifications to reach the cell cytoplasm and translate into functional proteins. For a long time, transcription and pre-mRNA processing were considered two independent events that occur sequentially in the cell. However, it has now been well established that transcription and pre-mRNA processing are two simultaneous processes that are precisely regulated inside the cell.
The chromatin structure, especially…

JoVE Research Video for The Eukaryotic Promoter Region 02:40

15.2K

The eukaryotic promoter region is a segment of DNA located upstream of a gene. It contains an RNA polymerase binding site, a transcription start site, and several cis-regulatory sequences.  The proximal promoter region is located in the vicinity of the gene and has cis-regulatory sequences and the core promoter. The core promoter is the binding site for RNA polymerase and is usually located between -35 and +35 nucleotides from the transcription start site. The distal promoter regions are…

JoVE Research Video for Chromatin Position Affects Gene Expression 02:35

22.7K

Chromatin is the massive complex of DNA and proteins packaged inside the nucleus. The complexity of chromatin folding and how it is packaged inside the nucleus greatly influences  access to genetic information. Generally, the nucleus' periphery is considered transcriptionally repressive, while the cell's interior is considered a transcriptionally active area. 
Topologically Associated Domains (TADs)
The 3-dimensional positioning of chromatin in the nucleus influences the…

JoVE Research Video for Duplication of Chromatin Structure 02:05

5.0K

The process of chromosome duplication during cell division requires genome-wide disruption and re-assembly of chromatin. The chromatin structure must be accurately inherited, reassembled, and maintained in the daughter cells to ensure lineage propagation.
The basic unit of the chromatin is the nucleosome, consisting of DNA wrapped around octameric histone proteins and short stretches of linker DNA separating individual nucleosomes. The histone proteins within the nucleosome have their…